

Introduction to Modeling
and Simulation with

 MATLAB® and Python

Chapman & Hall/CRC
Computational Science Series

PUBLISHED TITLES

SERIES EDITOR

Horst Simon
Deputy Director

Lawrence Berkeley National Laboratory

Berkeley, California, U.S.A.

COMBINATORIAL SCIENTIFIC COMPUTING
Edited by Uwe Naumann and Olaf Schenk

CONTEMPORARY HIGH PERFORMANCE COMPUTING: FROM PETASCALE
TOWARD EXASCALE
Edited by Jeffrey S. Vetter

CONTEMPORARY HIGH PERFORMANCE COMPUTING: FROM PETASCALE
TOWARD EXASCALE, VOLUME TWO
Edited by Jeffrey S. Vetter

DATA-INTENSIVE SCIENCE
Edited by Terence Critchlow and Kerstin Kleese van Dam

ELEMENTS OF PARALLEL COMPUTING
Eric Aubanel

THE END OF ERROR: UNUM COMPUTING
John L. Gustafson

EXASCALE SCIENTIFIC APPLICATIONS: SCALABILITY AND
PERFORMANCE PORTABILITY
Edited by Tjerk P. Straatsma, Timothy J. Williams, and Katerina Antypas

FROM ACTION SYSTEMS TO DISTRIBUTED SYSTEMS: THE REFINEMENT APPROACH
Edited by Luigia Petre and Emil Sekerinski

FUNDAMENTALS OF MULTICORE SOFTWARE DEVELOPMENT
Edited by Victor Pankratius, Ali-Reza Adl-Tabatabai, and Walter Tichy

FUNDAMENTALS OF PARALLEL MULTICORE ARCHITECTURE
Yan Solihin

THE GREEN COMPUTING BOOK: TACKLING ENERGY EFFICIENCY AT LARGE SCALE
Edited by Wu-chun Feng

GRID COMPUTING: TECHNIQUES AND APPLICATIONS
Barry Wilkinson

HIGH PERFORMANCE COMPUTING: PROGRAMMING AND APPLICATIONS
John Levesque with Gene Wagenbreth

Chapman & Hall/CRC
Computational Science Series

PUBLISHED TITLES

SERIES EDITOR

Horst Simon
Deputy Director

Lawrence Berkeley National Laboratory

Berkeley, California, U.S.A.

COMBINATORIAL SCIENTIFIC COMPUTING
Edited by Uwe Naumann and Olaf Schenk

CONTEMPORARY HIGH PERFORMANCE COMPUTING: FROM PETASCALE
TOWARD EXASCALE
Edited by Jeffrey S. Vetter

CONTEMPORARY HIGH PERFORMANCE COMPUTING: FROM PETASCALE
TOWARD EXASCALE, VOLUME TWO
Edited by Jeffrey S. Vetter

DATA-INTENSIVE SCIENCE
Edited by Terence Critchlow and Kerstin Kleese van Dam

ELEMENTS OF PARALLEL COMPUTING
Eric Aubanel

THE END OF ERROR: UNUM COMPUTING
John L. Gustafson

EXASCALE SCIENTIFIC APPLICATIONS: SCALABILITY AND
PERFORMANCE PORTABILITY
Edited by Tjerk P. Straatsma, Timothy J. Williams, and Katerina Antypas

FROM ACTION SYSTEMS TO DISTRIBUTED SYSTEMS: THE REFINEMENT APPROACH
Edited by Luigia Petre and Emil Sekerinski

FUNDAMENTALS OF MULTICORE SOFTWARE DEVELOPMENT
Edited by Victor Pankratius, Ali-Reza Adl-Tabatabai, and Walter Tichy

FUNDAMENTALS OF PARALLEL MULTICORE ARCHITECTURE
Yan Solihin

THE GREEN COMPUTING BOOK: TACKLING ENERGY EFFICIENCY AT LARGE SCALE
Edited by Wu-chun Feng

GRID COMPUTING: TECHNIQUES AND APPLICATIONS
Barry Wilkinson

HIGH PERFORMANCE COMPUTING: PROGRAMMING AND APPLICATIONS
John Levesque with Gene Wagenbreth

HIGH PERFORMANCE PARALLEL I/O
Prabhat and Quincey Koziol

HIGH PERFORMANCE VISUALIZATION:
ENABLING EXTREME-SCALE SCIENTIFIC INSIGHT
Edited by E. Wes Bethel, Hank Childs, and Charles Hansen

INDUSTRIAL APPLICATIONS OF HIGH-PERFORMANCE COMPUTING:
BEST GLOBAL PRACTICES
Edited by Anwar Osseyran and Merle Giles

INTRODUCTION TO COMPUTATIONAL MODELING USING C AND
OPEN-SOURCE TOOLS
José M Garrido

INTRODUCTION TO CONCURRENCY IN PROGRAMMING LANGUAGES
Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen

INTRODUCTION TO ELEMENTARY COMPUTATIONAL MODELING: ESSENTIAL
CONCEPTS, PRINCIPLES, AND PROBLEM SOLVING
José M. Garrido

INTRODUCTION TO HIGH PERFORMANCE COMPUTING FOR SCIENTISTS
AND ENGINEERS
Georg Hager and Gerhard Wellein

INTRODUCTION TO MODELING AND SIMULATION WITH MATLAB® AND PYTHON
Steven I. Gordon and Brian Guilfoos

INTRODUCTION TO REVERSIBLE COMPUTING
Kalyan S. Perumalla

INTRODUCTION TO SCHEDULING
Yves Robert and Frédéric Vivien

INTRODUCTION TO THE SIMULATION OF DYNAMICS USING SIMULINK®

Michael A. Gray

PEER-TO-PEER COMPUTING: APPLICATIONS, ARCHITECTURE, PROTOCOLS,
AND CHALLENGES
Yu-Kwong Ricky Kwok

PERFORMANCE TUNING OF SCIENTIFIC APPLICATIONS
Edited by David Bailey, Robert Lucas, and Samuel Williams

PETASCALE COMPUTING: ALGORITHMS AND APPLICATIONS
Edited by David A. Bader

PROCESS ALGEBRA FOR PARALLEL AND DISTRIBUTED PROCESSING
Edited by Michael Alexander and William Gardner

PROGRAMMING FOR HYBRID MULTI/MANY-CORE MPP SYSTEMS
John Levesque and Aaron Vose

PUBLISHED TITLES CONTINUED

PUBLISHED TITLES CONTINUED

SCIENTIFIC DATA MANAGEMENT: CHALLENGES, TECHNOLOGY, AND DEPLOYMENT
Edited by Arie Shoshani and Doron Rotem

SOFTWARE ENGINEERING FOR SCIENCE
Edited by Jeffrey C. Carver, Neil P. Chue Hong, and George K. Thiruvathukal

Introduction to Modeling
and Simulation with

 MATLAB® and Python

Steven I. Gordon
Brian Guilfoos

A C H A P M A N & H A L L B O O K

PUBLISHED TITLES CONTINUED

SCIENTIFIC DATA MANAGEMENT: CHALLENGES, TECHNOLOGY, AND DEPLOYMENT
Edited by Arie Shoshani and Doron Rotem

SOFTWARE ENGINEERING FOR SCIENCE
Edited by Jeffrey C. Carver, Neil P. Chue Hong, and George K. Thiruvathukal

MATLAB® and Simulink® are trademarks of the MathWorks, Inc. and are used with permission. The
MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or
discussion of MATLAB® and Simulink® software or related products does not constitute endorsement
or sponsorship by the MathWorks of a particular pedagogical approach or particular use of the
 MATLAB® and Simulink® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-4987-7387-4 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
 storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC),
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com/
http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com

vii

MATLAB® and Simulink® are trademarks of the MathWorks, Inc. and are used with permission. The
MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or
discussion of MATLAB® and Simulink® software or related products does not constitute endorsement
or sponsorship by the MathWorks of a particular pedagogical approach or particular use of the
 MATLAB® and Simulink® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-4987-7387-4 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
 storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC),
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface, xiii

Authors, xvii

Chapter 1 ◾ Introduction to Computational Modeling 1
1.1 THE IMPORTANCE OF COMPUTATIONAL SCIENCE 1

1.2 HOW MODELING HAS CONTRIBUTED
TO ADVANCES IN SCIENCE AND ENGINEERING 3

1.2.1 Some Contemporary Examples 8
1.3 THE MODELING PROCESS 9

1.3.1 Steps in the Modeling Process 11
1.3.2 Mathematical Modeling Terminology and

Approaches to Simulation 14
1.3.3 Modeling and Simulation Terminology 14
1.3.4 Example Applications of Modeling and Simulation 15

EXERCISES 17

REFERENCES 18

Chapter 2 ◾ Introduction to Programming Environments 21
2.1 THE MATLAB® PROGRAMMING ENVIRONMENT 21

2.1.1 The MATLAB® Interface 21
2.1.2 Basic Syntax 23

2.1.2.1 Variables and Operators 23
2.1.2.2 Keywords 25
2.1.2.3 Lists and Arrays 26

2.1.3 Common Functions 28

viii ◾ Contents

2.1.4 Program Execution 28
2.1.5 Creating Repeatable Code 29
2.1.6 Debugging 30

2.2 THE PYTHON ENVIRONMENT 30

2.2.1 Recommendations and Installation 30
2.2.2 The Spyder Interface 31
2.2.3 Basic Syntax 32

2.2.3.1 Variables and Operators 32
2.2.3.2 Keywords 34
2.2.3.3 Lists and Arrays 35

2.2.4 Loading Libraries 38
2.2.5 Common Functions 39
2.2.6 Program Execution 40
2.2.7 Creating Repeatable Code 40
2.2.8 Debugging 41

EXERCISES 42

Chapter 3 ◾ Deterministic Linear Models 45
3.1 SELECTING A MATHEMATICAL REPRESENTATION

FOR A MODEL 45

3.2 LINEAR MODELS AND LINEAR EQUATIONS 46

3.3 LINEAR INTERPOLATION 49

3.4 SYSTEMS OF LINEAR EQUATIONS 51

3.5 LIMITATIONS OF LINEAR MODELS 51

EXERCISES 52

REFERENCES 53

Chapter 4 ◾ Array Mathematics in MATLAB® and Python 55
4.1 INTRODUCTION TO ARRAYS AND MATRICES 55

4.2 BRIEF OVERVIEW OF MATRIX MATHEMATICS 56

4.3 MATRIX OPERATIONS IN MATLAB® 58

4.4 MATRIX OPERATIONS IN PYTHON 59

EXERCISES 60

Contents    ◾    ix

Chapter 5 ◾ Plotting 61
5.1 PLOTTING IN MATLAB® 61

5.2 PLOTTING IN PYTHON 68

EXERCISES 76

Chapter 6 ◾ Problem Solving 79
6.1 OVERVIEW 79

6.2 BOTTLE FILLING EXAMPLE 80

6.3 TOOLS FOR PROGRAM DEVELOPMENT 81

6.3.1 Pseudocode 82
6.3.2 Top–Down Design 82
6.3.3 Flowcharts 83

6.4 BOTTLE FILLING EXAMPLE CONTINUED 84

EXERCISES 85

Chapter 7 ◾ Conditional Statements 87
7.1 RELATIONAL OPERATORS 87

7.2 LOGICAL OPERATORS 88

7.3 CONDITIONAL STATEMENTS 89

7.3.1 MATLAB® 89
7.3.2 Python 92

EXERCISES 95

Chapter 8 ◾ Iteration and Loops 97
8.1 FOR LOOPS 97

8.1.1 MATLAB® Loops 97
8.1.2 Python Loops 98

8.2 WHILE LOOPS 99

8.2.1 MATLAB® While Loops 99
8.2.2 Python While Loops 99

8.3 CONTROL STATEMENTS 100

8.3.1 Continue 100
8.3.2 Break 100

EXERCISES 100

x ◾ Contents

Chapter 9 ◾ Nonlinear and Dynamic Models 101
9.1 MODELING COMPLEX SYSTEMS 101

9.2 SYSTEMS DYNAMICS 101

9.2.1 Components of a System 102
9.2.2 Unconstrained Growth and Decay 104

9.2.2.1 Unconstrained Growth Exercises 106
9.2.3 Constrained Growth 108

9.2.3.1 Constrained Growth Exercise 110
9.3 MODELING PHYSICAL AND SOCIAL PHENOMENA 111

9.3.1 Simple Model of Tossed Ball 112
9.3.2 Extending the Model 113

9.3.2.1 Ball Toss Exercise 114
REFERENCES 115

Chapter 10 ◾ Estimating Models from Empirical Data 117
10.1 USING DATA TO BUILD FORECASTING MODELS 117

10.1.1 Limitations of Empirical Models 118
10.2 FITTING A MATHEMATICAL FUNCTION TO DATA 120

10.2.1 Fitting a Linear Model 122
10.2.2 Linear Models with Multiple Predictors 125
10.2.3 Nonlinear Model Estimation 126

10.2.3.1 Limitations with Linear
Transformation 130

10.2.3.2 Nonlinear Fitting and Regression 130
10.2.3.3 Segmentation 131

EXERCISES 131

FURTHER READINGS 132

REFERENCES 132

Chapter 11 ◾ Stochastic Models 133
11.1 INTRODUCTION 133

11.2 CREATING A STOCHASTIC MODEL 134

Contents    ◾    xi

11.3 RANDOM NUMBER GENERATORS IN
MATLAB® AND PYTHON 136

11.4 A SIMPLE CODE EXAMPLE 137

11.5 EXAMPLES OF LARGER SCALE STOCHASTIC
MODELS 139

EXERCISES 142

FURTHER READINGS 143

REFERENCES 143

Chapter 12 ◾ Functions 145
12.1 MATLAB® FUNCTIONS 145

12.2 PYTHON FUNCTIONS 147

12.2.1 Functions Syntax in Python 147
12.2.2 Python Modules 148

EXERCISES 149

Chapter 13 ◾ Verification, Validation, and Errors 151
13.1 INTRODUCTION 151

13.2 ERRORS 152

13.2.1 Absolute and Relative Error 152
13.2.2 Precision 153
13.2.3 Truncation and Rounding Error 153
13.2.4 Violating Numeric Associative and

Distributive Properties 155
13.2.5 Algorithms and Errors 155

13.2.5.1 Euler’s Method 156
13.2.5.2 Runge–Kutta Method 158

13.2.6 ODE Modules in MATLAB®

 and Python 159
13.3 VERIFICATION AND VALIDATION 159

13.3.1 History and Definitions 160
13.3.2 Verification Guidelines 162

xii ◾ Contents

13.3.3 Validation Guidelines 163
13.3.3.1 Quantitative and Statistical

Validation Measures 164
13.3.3.2 Graphical Methods 166

EXERCISES 166

REFERENCES 167

Chapter 14 ◾ Capstone Projects 169
14.1 INTRODUCTION 169

14.2 PROJECT GOALS 170

14.3 PROJECT DESCRIPTIONS 171

14.3.1 Drug Dosage Model 171
14.3.2 Malaria Model 172
14.3.3 Population Dynamics Model 174
14.3.4 Skydiver Project 176
14.3.5 Sewage Project 178
14.3.6 Empirical Model of Heart Disease Risk Factors 180
14.3.7 Stochastic Model of Traffic 180
14.3.8 Other Project Options 181

REFERENCE 181

INDEX, 183

xiii

Preface

Modeling and simulation using computation or computational
science has become an essential part of the research and develop-

ment process in the physical, biological, and social sciences and engi-
neering. It allows the exploration of physical and biological systems at
the micro- and molecular level that increase our understanding of their
function and the discovery of new materials and new drugs. It allows us
to understand the interactions of components in complex systems from
those we engineer and build to our ecosystems and climate. In recent
years, computational science has produced enormous advances in almost
all fields of scientific and technological inquiry, including DNA sequenc-
ing, behavioral modeling, global climatic predictions, drug design, finan-
cial systems, and medical visualization. At the same time, it has become
critical in the design, testing, and manufacturing of new products and
services, saving millions of dollars in development costs and getting new
products to market more rapidly.

Scientists, social scientists, and engineers must have an understand-
ing of both modeling and computer programming principles so that
they appropriately apply those techniques in their practice. Several sets
of knowledge and skills are required to achieve that understanding. How
do we translate the relationships within a system being modeled into a
set of mathematical functions that accurately portray the behavior of
that system? How are the mathematics translated into computer code
that correctly simulates those relationships? What is the nature of errors
introduced by simplifying the depiction of the system, introduced by
the computer algorithm used to solve the equations, and limited by our
knowledge of the system behavior? How accurate is the model? How do
we know the model is logically correct and follows from the physical and
mathematical laws used to create it (verification)? How do we demonstrate

xiv ◾ Preface

that the model correctly predicts the phenomena modeled (validation)?
These are the underlying questions that are the focus of this book.

The book is intended for students and professionals in science, social
science, and engineering who wish to learn the principles of computer
modeling as well as basic programming skills. For many students in these
fields, with the exception of computer science students and some engineer-
ing students, enrollment in an introductory programming course may be
impractical or difficult. At many institutions, these courses are focused
primarily on computer science majors and use a programming language
such as Java that is not readily applicable to science and engineering prob-
lems. We have found that teaching programming as a just-in-time tool
used to solve real problems more deeply engages those students to master
the programming concepts. Combining that effort with learning the prin-
ciples of modeling and simulation provides the link between program-
ming and problem solving while also fitting more readily into a crowded
curriculum.

For students from all fields, learning the basic principles of modeling
and simulation prepares them for understanding and using computer
modeling techniques that are being applied to a myriad of problems. The
knowledge of the modeling process should provide the basis for under-
standing and evaluating models in their own subject domain. The book
content focuses on meeting a set of basic modeling and simulation compe-
tencies that were developed as part of several National Science Foundation
grants (see http://hpcuniversity.org/educators/undergradCompetencies/).
Even though computer science students are much more expert program-
mers, they are not often given the opportunity to see how those skills are
being applied to solve complex science and engineering problems, and may
also not be aware of the libraries used by scientists to create those models.

We have chosen to use MATLAB® and Python for several reasons. First,
both offer interfaces that the intended audience should find intuitive. Both
interfaces provide instant feedback on syntax errors and extensive help
documents and tutorials that are important for novice programmers.
Although MATLAB is a commercially licensed program, whereas Python
is open source, many campuses currently have a site license for MATLAB.
Students can also purchase the student version of MATLAB relatively
cheaply.

Perhaps most importantly, both programs are extensively used by the
science and engineering community for model development and test-
ing. Even though neither program scales as efficiently as C, Fortran,

http://hpcuniversity.org/educators/undergradCompetencies/

Preface    ◾    xv

or other languages for large-scale modeling on current parallel comput-
ing architectures, they do offer a stepping stone to those environments.
Both have extensive toolkits and scientific and mathematical libraries that
can be invoked to reduce the amount of coding required to undertake
many modeling projects. Although we use these programming environ-
ments to teach rudimentary programming techniques without applying
a large number of these tools, they are available to students for develop-
ing capstone projects or for use in more advanced courses later in their
curriculum.

ORGANIZATION OF THE BOOK
The book interleaves chapters on modeling concepts and related exercises
with programming concepts and exercises. We start out with an introduc-
tion to modeling and its importance to current practices in the sciences
and engineering. We then introduce each of the programming environ-
ments and the syntax used to represent variables and compute math-
ematical equations and functions. As students gain more programming
expertise, we go back to modeling concepts, providing starting code for a
variety of exercises where students add additional code to solve the prob-
lem and provide an analysis of the outcomes. In this way, we build both
modeling and programming expertise with a “just-in-time” approach so
that by the end of the book, students can take on relatively simple model-
ing example on their own.

Each chapter is supplemented with references to additional read-
ing, tutorials, and exercises that guide students to additional help and
allow them to practice both their programming and analytical modeling
skills. The companion website at http://www.intromodeling.com provides
updates to instructions when there are substantial changes in software
versions as well as electronic copies of exercises and the related code.
Solutions to the computer exercises are available to instructors on the
 publisher’s website.

Each of the programming-related chapters is divided into two parts—
one for MATLAB and one for Python. We assume that most instructors
will choose one or the other so that students can focus only on the lan-
guage associated with their course. In these chapters, we also refer to addi-
tional online tutorials that students can use if they are having difficulty
with any of the topics.

The book culminates with a set of final project exercise suggestions that
incorporate both the modeling and the programming skills provided in

http://www.intromodeling.com

xvi ◾ Preface

the rest of the volume. These projects could be undertaken by individuals
or small groups of students. They generally involve research into a par-
ticular modeling problem with suggested background reading from the
literature. Each exercise has a set of starting code providing a very simplis-
tic view of the system and suggestions for extending the model by adding
additional components to relax some of the assumptions. Students then
complete the program code and use the model to answer a number of
questions about the system, complete model verification and validation
where possible, and present a report in written and oral form.

The website also offers a space where people can suggest additional
projects they are willing to share as well as comments on the existing proj-
ects and exercises throughout the book. We hope that the combination of
materials contributes to the success of those interested in gaining model-
ing and simulation expertise.

MATLAB® is a registered trademark of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

http://www.mathworks.com
mailto:info@mathworks.com

xvii

Authors

Steven I. Gordon is a professor emeritus of the City and Regional Planning
and Environmental Science Programs at the Ohio State University, Columbus,
Ohio. He earned a bachelor’s degree from the University at Buffalo, Buffalo,
New York, in 1966 and a PhD degree from Columbia University, New York, in
1977. He also serves as the senior education lead at the Ohio Supercomputer
Center. In that and other roles at OSC, he has focused primarily on the
integration of computational science into the curricula at higher education
institutions in Ohio and throughout the United States. He has worked with
multiple institutions through a variety of grants from the National Science
Foundation, including the Extreme Science and Engineering Discovery
Environment (XSEDE) and Blue Waters project.

Dr. Gordon is also one of the founders and first chair of the Association of
Computing Machinery (ACM) Special Interest Group High Performance
Computing (SIGHPC) Education Chapter and serves as a representative
of the SIGHPC on the ACM Education Council. He has published exten-
sively on topics related to environmental planning and the applications of
modeling and simulation in education and research.

Brian Guilfoos serves as the High Performance Computing (HPC) Client
Services manager for the Ohio Supercomputer Center (OSC), Columbus,
Ohio. Guilfoos leads the HPC Client Services Group, which provides train-
ing and user support to facilitate the use of computational science by the
center’s user communities. He earned a master’s degree in public policy and
administration in 2014 and a bachelor’s degree in electrical engineering in
2000, both from the Ohio State University, Columbus, Ohio. He also works
directly with OSC clients to help convert computer codes and develop
batch scripting, compiling, and code development so that these researchers
can efficiently use the center’s supercomputers and licensed software.

xviii ◾ Authors

Guilfoos developed and delivered training in MATLAB® as a part of the
U.S. Department of Defense High Performance Computing Modernization
Program support.

Prior to joining OSC, he was contracted by the Air Force Research
Laboratory (AFRL) to focus on software development in support of
unmanned aerial vehicle interface research. He was a key technical mem-
ber of a team that was awarded the 2004 Scientific and Technological
Achievement Award by the AFRL’s Human Effectiveness Directorate.

1

C h a p t e r 1

Introduction to
Computational Modeling

1.1 THE IMPORTANCE OF COMPUTATIONAL SCIENCE
Advances in science and engineering have come traditionally from the
application of the scientific method using theory and experimentation
to pose and test our ideas about the nature of our world from multiple
perspectives. Through experimentation and observation, scientists develop
theories that are then tested with additional experimentation. The cause and
effect relationships associated with those discoveries can then be represented
by mathematical expressions that approximate the behavior of the system
being studied.

With the rapid development of computers, scientists and engineers
translated those mathematical expressions into computer codes that
allowed them to imitate the operation of the system over time. This pro-
cess is called simulation. Early computers did not have the capability of
solving many of the complex system simulations of interest to scientists
and engineers. This led to the development of supercomputers, comput-
ers with higher level capacity for computation compared to the general-
purpose computers of the time. In 1982, a panel of scientists provided
a report to the U.S. Department of Defense and the National Science
Foundation urging the government to aid in the development of super-
computers (Lax, 1982). They indicated that “the primacy of the U.S. in sci-
ence, engineering, and computing technology could be threatened relative
to that of other countries with national efforts in supercomputer access

2 ◾ Modeling and Simulation with MATLAB® and Python

and development.” They recommended both investments in research and
development and in the training of personnel in science and engineering
computing.

The capability of the computer chips in your cell phone today far
exceeds that of the supercomputers of the 1980s. The Cray-1 super-
computer released in 1975 had a raw computing power of 80 million
 floating-point operations per second (FLOPS). The iPhone 5s has a graph-
ics processor capable of 76.8 Gigaflops, nearly one thousand times more
powerful (Nick, 2014). With that growth in capability, there has been a
dramatic expansion in the use of simulation for engineering design and
research in science, engineering, social science, and the humanities. Over
the years, that has led to many efforts to integrate computational science
into the curriculum, to calls for development of a workforce prepared
to apply computing to both academic and commercial pursuits, and to
investments in the computer and networking infrastructure required
to meet the demands of those applications. For example, in 2001 the
Society for Industrial and Applied Mathematics (SIAM) provided a
review of the graduate education programs in science and engineering
(SIAM, 2001). They defined computational science and engineering as a
multidisciplinary field requiring expertise in computer science, applied
mathematics, and a subject field of science and engineering. They pro-
vided examples of emerging research, an outline of a curriculum, and
curriculum examples from both North America and Europe.

Yasar and Landau (2001) provided a similar overview of the interdisci-
plinary nature of the field. They also describe the possible scope of programs
at the both the undergraduate and graduate levels and provide a survey of
existing programs and their content. More recently, Gordon et al. (2008)
described the creation of a competency-based undergraduate minor pro-
gram in computational science that was put into place at several institutions
in Ohio. The competencies were developed by an interdisciplinary group of
faculty and reviewed by an industry advisory committee from the perspective
of the skills that prospective employers are looking for in students entering
the job market. The competencies have guided the creation of several other
undergraduate programs. They have also been updated and augmented
with graduate-level computational science competencies and competencies
for data-driven science. The most recent version of those competencies can
be found on the HPC University website (HPC University, 2016).

More recently, there have been a number of national studies and
panels emphasizing the need for the infrastructure and workforce

Introduction to Computational Modeling    ◾    3

required to undertake large-scale modeling and simulation (Council on
Competitiveness, 2004; Joseph et al., 2004; Reed, 2005; SBES, 2006). This book
provides an introduction to computational science relevant to students across
the spectrum of science and engineering. In this chapter, we begin with a
brief review of the history or computational modeling and its contributions
to the advancement of science. We then provide an overview of the modeling
process and the terminology associated with modeling and simulation.

As we progress through the book, we guide students through basic
programming principles using two of the widely used simulation
 environments—MATLAB® and Python. Each chapter introduces either
a new set of programming principles or applies them to the solution of
one class of models. Each chapter is accompanied by exercises that help
to build both basic modeling and programming skills that will provide a
background for more advanced modeling courses.

1.2 HOW MODELING HAS CONTRIBUTED
TO ADVANCES IN SCIENCE AND ENGINEERING

There are a myriad of examples documenting how modeling and simulation
has contributed to research and to the design and manufacture of new prod-
ucts. Here, we trace the history of computation and modeling to illustrate
how the combination of advances in computing hardware, software, and
scientific knowledge has led to the integration of computational modeling
techniques throughout the sciences and engineering. We then provide a few,
more recent examples of advances to further illustrate the state-of-the-art.
One exercise at the end of the chapter provides an opportunity for students
to examine additional examples and share them with their classmates.

The first electronic programmable computer was the ENIAC built for
the army toward the end of World War II as a way to quickly calculate
artillery trajectories. Herman Goldstine (1990), the project leader, and
two professors from the University of Pennsylvania, J. Presper Eckert,
and John Mauchly sold the idea to the army in 1942 (McCartney, 1999).
As the machine was being built and tested, a large team of engineers and
mathematicians was assembled to learn how to use it. That included six
women mathematicians who were recruited from colleges across the
country. As the machine was completed in 1945, the war was near an end.

ENIAC was used extensively by the mathematician John von Neumann
not only to undertake its original purposes for the army but also to create
the first weather model in 1950. That machine was capable of 400 floating-
point operations per second and needed 24 hours to calculate the simple

4 ◾ Modeling and Simulation with MATLAB® and Python

daily weather model for North America. To provide a contrast to the
power of current processors, Peter and Owen Lynch (2008) created a
version of the model that ran on a Nokia 6300 mobile phone in less than
one second!

It is impossible to document all of the changes in computational
power and its relationship to the advancements in science that have
occurred since this first computer. Tables 1.1 and 1.2 show a timeline

TABLE 1.1 Timeline of Advances in Computer Power and Scientific Modeling (Part 1)

Example Hardware Max. Speed Date Weather and Climate Modeling

ENIAC 400 Flops 1945
1950 First automatic weather forecasts

UNIVAC 1951
IBM 704 12 KFLOP 1956

1959 Ed Lorenz discovers the chaotic
behavior of meteorological processes

IBM7030 Stretch;
UNIVAC LARC

500-500 KFLOP ~1960

1965 Global climate modeling underway
CDC6600 1 Megaflop 1966
CDC7600 10 MFLOP 1975
CRAY1 100 MFLOP 1976
CRAY-X-MP 400 MFLOP

1979 Jule Charney report to NAS
CRAY Y-MP 2.67 GFLOP

1988 Intergovernmental Panel on Climate
Change

1992 UNFCCC in Rio
IBM SP2 10 Gigaflop 1994
ASCII Red 2.15 TFLOP 1995 Coupled Model Intercomparison

Project (CMIP)
2005 Earth system models

Blue Waters 13.34 PFLOP 2014

Sources: Bell, G., Supercomputers: The amazing race (a history of supercomputing, 1960–2020),
2015, http://research.microsoft.com/en-us/um/people/gbell/MSR-TR-2015-2_
Supercomputers-The_Amazing_Race_Bell.pdf (accessed December 15, 2016).

 Bell, T., Supercomputer timeline, 2016, https://mason.gmu.edu/~tbell5/page2.html
(accessed December 15, 2016).

 Esterbrook, S., Timeline of climate modeling, 2015, https://prezi.com/pakaaiek3nol/
timeline-of-climate-modeling/ (accessed December 15, 2016).

http://research.microsoft.com/en-us/um/people/gbell/MSR-TR-2015-2_Supercomputers-The_Amazing_Race_Bell.pdf
http://research.microsoft.com/en-us/um/people/gbell/MSR-TR-2015-2_Supercomputers-The_Amazing_Race_Bell.pdf
https://mason.gmu.edu/~tbell5/page2.html
https://prezi.com/pakaaiek3nol/timeline-of-climate-modeling/
https://prezi.com/pakaaiek3nol/timeline-of-climate-modeling/

Introduction to Computational Modeling    ◾    5

TABLE 1.2 Timeline of Advances in Computer Power and Scientific Modeling (Part 2)

Date Theoretical Chemistry Aeronautics and Structures Software and Algorithms

1950 Electronic wave functions
1951 Molecular orbital theory

(Roothan)
1953 One of the first

molecular simulations
(Metropolis et al.)

1954 Vector processing
directives

1956 First calculation of
multiple electronic
states of a molecule on
EDSAC (Boys)

1957 FORTRAN created
1965 Creation of ab initio

molecular modeling
(People)

1966 2D Navier-Stokes
simulations; FLO22;
transonic flow over a
swept wing

1969 UNIX created
1970 2D Inviscid Flow Models;

design of regional jet
1971 Nastran (NASA

Structural Analysis)
1972 C programming

language created
1973 Matrix computations

and errors
(Wilkinson)

1975 3D Inviscid Flow Models;
complete airplane
solution

1976 First calculation of a
chemical reaction
(Warshel)

DYNA3D which became
LS-DYNA (mid-70s)

1977 First molecular dynamics
of proteins (Karplus)

Boeing design of 737-500

First calculation of a
reaction transition state
(Chandler)

(Continued)

6 ◾ Modeling and Simulation with MATLAB® and Python

Date Theoretical Chemistry Aeronautics and Structures Software and Algorithms

1979 Basic Linear Algebra
Subprograms (BLAS)
library launched

1980s Journal of Computational
Chemistry first published

800,000 mesh cells
around a wing, FLO107

1984 MATLAB created
1985 Design of Boeing 767,777 GNU project launched

(free Software
foundation)

1991 Linux launched
1993 Message passing

interface (MPI)
specification

1994 Python created
1995 First successful

computer-based drug
design (Kubinyi)

1997 Open multiprocessing
(OpenMP)
specification

2000 Discontinuous finite
element methods;
turbulent flow; design
of airbus

2007 CUDA launched
2014 Open accelerator

(OpenACC)
specification

Sources: Bartlett, B.N., The contributions of J.H. Wilkinson to numerical analysis. In S.G. Nash,
(Ed.), A History of Scientific Computing, ACM Press, New York, pp. 17–30, 1990.

 Computer History Museum, Timeline of computer history, software and languages,
2017, http://www.computerhistory.org/timeline/software-languages/ (accessed January
2, 2017).

 Dorzolamide, 2016, https://en.wikipedia.org/wiki/Dorzolamide (accessed December
15, 2016).

 Jameson, A., Computational fluid dynamics, past, present, and future, 2016, http://
aero-comlab.stanford.edu/Papers/NASA_Presentation_20121030.pdf (accessed
December 15, 2016).

 Prat-Resina, X., A brief history of theoretical chemistry, 2016, https://sites.google.
com/a/r.umn.edu/prat-resina/divertimenti/a-brief-history-of-theoretical-chemistry
(accessed December 15, 2016).

 Vassberg, J.C., A brief history of FLO22, http://dept.ku.edu/~cfdku/JRV/Vassberg.
pdf (accessed December 15, 2016).

TABLE 1.2 (Continued) Timeline of Advances in Computer Power and Scientific
Modeling (Part 2)

http://www.computerhistory.org/timeline/software-languages/
https://en.wikipedia.org/wiki/Dorzolamide
http://aero-comlab.stanford.edu/Papers/NASA_Presentation_20121030.pdf
http://aero-comlab.stanford.edu/Papers/NASA_Presentation_20121030.pdf
http://dept.ku.edu/~cfdku/JRV/Vassberg.pdf
http://dept.ku.edu/~cfdku/JRV/Vassberg.pdf
https://sites.google.com/a/r.umn.edu/prat-resina/divertimenti/a-brief-history-of-theoretical-chemistry
https://sites.google.com/a/r.umn.edu/prat-resina/divertimenti/a-brief-history-of-theoretical-chemistry

Introduction to Computational Modeling    ◾    7

of the development of selected major hardware advances, software and
algorithm development, and scientific applications from a few fields.
Looking at the first column in Table 1.1, one can see the tremendous
growth in the power of the computers used in large-scale scientific
computation. Advances in electronics and computer design have brought
us from the ENIAC with 400 flops to Blue Waters with 13.34 petaflops,
an increase in the maximum number of floating-point operations per
second of more than 1015!

Tracing weather and climate modeling from von Neumann’s first model
on ENIAC, we can see that the computational power has allowed scien-
tists to make rapid progress in the representation of weather and climate.
In 1959, Lorenz laid the foundation for the mathematics behind weather
events. By 1965, further advances in computing power and scientific
knowledge provided the basis for the first global climate models. These
have grown in scope to the present day to earth system models that cou-
ple atmospheric and ocean circulation that provide for the basis for the
climate change forecasts of the international community.

Table 1.2 documents similar developments in computational chem-
istry, aeronautics and structures, and selected achievements in software
and algorithms. The scientific advances were made possible not only by
improvements in the hardware but also by the invention of program-
ming languages, compilers, and the algorithms that are used to make
the mathematical calculations underlying the models. As with weather
modeling, one can trace the advancement of computational chemis-
try from the first simulation of molecules to the screening of drugs by
modeling their binding to biomolecules. In aeronautics, the simulation
of airflow over a wing in two dimensions has advanced to the three-
dimensional simulation of a full airplane to create a final design. Similar
timelines could be developed for every field of science and engineering
from various aspects of physics and astronomy to earth and environ-
mental science, to every aspect of engineering, and to economics and
sociological modeling.

For those just getting introduced to these concepts, the terminology
is daunting. The lesson at this point is to understand that computation
has become an essential part of the design and discovery process across
a wide range of scientific fields. Thus, it is essential that everyone under-
stands the basic principles used in modeling and simulation, the mathe-
matics underlying modeling efforts, and the tools of modeling along with
their pitfalls.

8 ◾ Modeling and Simulation with MATLAB® and Python

1.2.1 Some Contemporary Examples

Although this book will not involve the use of large-scale models on
supercomputers, some contemporary examples of large-scale simulations
may provide insights into the need for the computational power described
in Table 1.1. We provide four such examples.

Vogelsberger et al. created a model of galaxy formation comprised of
12 billion resolution elements showing the evolution of the universe from
12 million years after the Big Bang evolving over a period of 13.8 billion
years (Vogelsberger et al., 2014). The simulation produced a large variety of
galaxy shapes, luminosities, sizes, and colors that are similar to observed
population. The simulation provided insights into the processes associated
with galaxy formation. This example also illustrates how computation can
be applied to a subject where experimentation is impossible but where
simulation results can be compared with scientific observations.

Drug screening provides an example of how computer modeling can
shorten the time to discovery. The drug screening pipeline requires a
model of a target protein or macromolecular structure that is associated
with a specific disease mechanism. A list of potential candidate com-
pounds is then tested to see which have the highest affinity to bind to that
protein, potentially inhibiting the medical problem. Biesiada et al. (2012)
provide an excellent overview of the workflow associated with this process
and the publically available software for accomplishing those tasks. The
use of these tools allows researchers to screen thousands of compounds
for their potential use as drugs. The candidate list can then be pared down
to only a few compounds where expensive experimental testing is used.

The reports on global warming use comprehensive models of the
earth’s climate including components on the atmosphere and hydro-
sphere (ocean circulation and temperature, rainfall, polar ice caps) to
forecast the long-term impacts on our climate and ecosystems (Pachauri
and Meyer, 2014). The models:

reproduce observed continental-scale surface temperature patterns
and trends over many decades, including the more rapid warming
since the mid-20th century and the cooling immediately following
large volcanic eruptions (very high confidence) (IPC, 2013, p. 15).

Modeling and simulation has also become a key part of the process and
designing, testing, and producing products and services. Where the build-
ing of physical prototypes or the completion of laboratory experiments

Introduction to Computational Modeling    ◾    9

may take weeks or months and cost millions of dollars, industry is instead
creating virtual experiments that can be completed in a short time at
greatly reduced costs. Proctor and Gamble uses computer modeling to
improve many of its products. One example is the use of molecular mod-
eling to test the interactions among surfactants in their cleaning products
with a goal of producing products that are environmentally friendly and
continue to perform as desired (Council on Competiveness, 2009).

Automobile manufacturers have substituted modeling for the building
of physical prototypes of their cars to save time and money. The build-
ing of physical prototypes called mules is expensive, costing approxi-
mately $500,000 for each vehicle with 60 prototypes required before
going into production (Mayne, 2005). The design of the 2005 Toyota
Avalon required no mules at all—using computer modeling to design and
test the car. Similarly, all of the automobile manufacturers are using mod-
eling to reduce costs and get new products to market faster (Mayne, 2005).

These examples should illustrate the benefits of using modeling and
simulation as part of the research, development, and design processes for
scientists and engineers. Of course, students new to modeling and simula-
tion cannot be expected to effectively use complex, large-scale simulation
models on supercomputers at the outset of their modeling efforts. They
must first understand the basic principles for creating, testing, and using
models as well as some of the approaches to approximating physical real-
ity in computer code. We begin to define those principles in Section 1.3
and continue through subsequent chapters.

1.3 THE MODELING PROCESS
Based on the examples discussed earlier, it should be clear that a model
is an abstraction or simplification of a real-world object or phenomenon
that helps us gain insights into the state or behavior of a complex sys-
tem. Each of us creates informal, mental models all the time as an aid to
making decisions. One example may be deciding on a travel route that
gets us to several shopping locations faster or with the fewest traffic head-
aches. To do this, we analyze information from previous trips to make an
informed decision about where there may be heavy traffic, construction,
or other impediments to our trip.

Some of our first formal models were physical models. Those include sim-
plified prototypes of objects used to evaluate their characteristics and behav-
iors. For example, auto manufacturers built clay models of new car designs
to evaluate the styling and to test the design in wind-tunnel experiments.

10 ◾ Modeling and Simulation with MATLAB® and Python

One of the most ambitious physical models ever built was a costly 200 acre
model of the Mississippi River Basin used to simulate flooding in the
watershed (U.S. Army Corps of Engineers, 2006). A photo of a portion
of this model is shown in Figure 1.1. It included replicas of urban areas,
the (Fatherree, 2006) stream bed, the underlying topography, levees, and
other physical characteristics. Special materials were used to allow flood
simulations to be tested and instrumented.

Through theory and experimentation, scientists and engineers also
developed mathematical models representing aspects of physical behaviors.
These became the basis of computer models by translating the mathemat-
ics into computer codes. Over time, mathematical models that started
as very simplistic representations of complex systems have evolved into
 systems of equations that more closely approximate real-world phenomena
such as the large-scale models discussed earlier in this chapter.

Creating, testing, and applying mathematical models using computa-
tion require an iterative process. The process starts with an initial set of
simplifying assumptions and is followed by testing, alteration, and applica-
tion of the model. Those steps are discussed in Section 1.3.1.

Mississippi Basin Model
Vertical scale - 1:100; horizontal scale - 1:2000. Looking upstream on the Ohio River from Evansville. Indiana,
Tennessee, and Cumberland Rivers are in the foreground showing the site of the Kentucky and Barkley Dams.

Tradewater and Green Rivers are shown center. File No. 1270–4

FIGURE 1.1 Photo of portion of Mississippi River Basin model.

Introduction to Computational Modeling    ◾    11

1.3.1 Steps in the Modeling Process

A great deal of work must be done before one can build a mathemati-
cal model on a computer. Figure 1.2 illustrates the steps in the modeling
process. The first step is to analyze the problem and define the objec-
tives of the model. This step should include a review of the literature to
uncover previous research on the topic, experimental or field-measured
data showing various states of the system and the measured outcomes,
mathematical representations of the system derived from theories, and
previous modeling efforts.

As that information is being gathered, it is also important to define
the objectives of the modeling effort. There are several questions that
should be addressed while considering the model objectives: What are
the outcomes that we would like the model to predict? Are we interested
in every possible outcome or is there a subset of conditions that would
satisfy our model objectives? For example, we could be interested in just

Analyze the
problem and

de�ne objectives
for model

Create a
conceptual

model of the
system

Make simplifying
assumptions

Choose variables
De�ne relationships

De�ne equations
and functions

Implement the
computer

model

Interpret results
Verify and re�ne

model

Validate the
model

Analysis and
reporting

Draw conclusions
Maintain and re�ne

the model

FIGURE 1.2 Major steps in the modeling process.

12 ◾ Modeling and Simulation with MATLAB® and Python

the average or normal state of affairs associated with a phenomenon or
potential extreme events may be critical for our analysis. What level of
accuracy is required for the predicted outcomes? This will impact the
nature of the simplifying assumptions, input data, and computing algo-
rithms that are required to build the model.

The second step in the process is to create a conceptual model of the
system based on the analysis in the first step. A conceptual model will
begin to specify all of the cause and effect relationships in the system,
information on the data required and available to implement a model, and
references to documents that were found in the initial analysis. The con-
ceptual model should include a concept map showing the cause and effect
relationships associated with the model and tables showing the different
variables, data sources, and references. This can be done on a whiteboard,
pencil and paper, or using a formal flowcharting or concept-mapping tool.
There are several free tools for concept mapping. Cmap provides a free
concept-mapping tool developed by the Florida Institute for Human and
Machine Cognition. It creates nodes representing major components of a
concept and labels the links between nodes with their relationships (Cmap,
2016). Mind Map Maker is a free mind-mapping tool provided as an app
for Google Chrome users (Mindmapmaker, 2016). This tool allows one to
create links between associated items. There are also a number of com-
mercial packages in both categories.

Figures 1.3 and 1.4 are examples of a partially completed concept map
and mind map showing the components of a model of the time it takes to
make a car trip between two points.

Time to traverse road segment

Dictates

Average speed

Slow
Slow

Parked cars

Greater means faster

Width and travel lanes Traffic control devices

FIGURE 1.3 Partial concept map of model to calculate travel time using Cmap.

Victor
Destacar

Introduction to Computational Modeling    ◾    13

The average speed across a road segment is slowed by parked cars and
traffic control devices while wider lanes and higher speed limits take
less time. The total time for a trip would need to add the average times
associated with traversing each road segment. Thus, data on each seg-
ment will be needed as input to the model. Simple versions of such esti-
mates are provided by global positioning satellite (GPS) equipment or
the Internet mapping services that are available online. There are many
other conditions that would impact this system. Modeling traffic condi-
tions are a topic of one of the exercises at the end of the chapter.

Going back to Figure 1.2, one must choose which simplifying assump-
tions can be made in a model. This, in turn, leads to a selection of the
data that would be needed, the variables that will drive the model, and the
equations and mathematical functions that will comprise the model.

Once these items have been defined, a computer version of the model
can be created and tested. The results must be verified to ascertain that the
code is working properly. If the model is giving unexpected results with
the code working properly, there may be a need to reexamine the simplify-
ing assumptions and to reformulate the model. Thus, one may go through
several iterations until the model is providing sufficiently accurate results.
This can be validated against available experimental or field data to pro-
vide a quantitative assessment of model accuracy. Finally, the model can
be used to undertake more detailed analysis and the results reported.
As time goes on, the model must be maintained and may be improved
by relaxing more of the assumptions and/or improving the input data. It
should be noted that the judgment of whether a model is giving reasonable

Slower

Traffic control devices

Parked cars Average speed

Faster

Higher speed limit

Wider lanes

More lanes

Time to traverse
road segment

FIGURE 1.4 Partial mind map of model to calculate travel time using mind
map maker.

14 ◾ Modeling and Simulation with MATLAB® and Python

results is sometimes as much an art as a science. Confidence in that judg-
ment is a function of the experience of the modeler and the breadth and
depth of the previous research about the system under study. Of course
the best validation of modeling results comes from comparisons with real
data gathered from observations or experiments.

1.3.2 Mathematical Modeling Terminology
and Approaches to Simulation

Similar to all scientific disciplines, mathematical modeling has its own
unique vocabulary. Modeling novices may believe that the language used
just creates a smoke screen that hides any problems associated with a
model’s development and use. Unfortunately, sometimes there is truth in
that belief. Nevertheless, it is important to learn that language to enable
a critical understanding of the modeling literature. We will begin with
some basic definitions of modeling terms in this section.

It is also important to begin to understand the variety of approaches to
modeling different types of systems. We will use some of the terminology
we introduce to provide a few examples of different modeling approaches to
simulate a variety of situations. We will then conclude this chapter with some
exercises that let you delve deeper into the world of modeling and simulation.

1.3.3 Modeling and Simulation Terminology

By now, you should have your own concept of what constitutes a math-
ematical or computer model. A more formal definition is provided here.

There are several different ways to classify models. Models can be deter-
ministic or probabilistic. Another term for probabilistic is stochastic mean-
ing a random process or a process, which occurs by chance. A probabilistic
model includes one or more elements that might occur by chance or at ran-
dom while a deterministic model does not. A deterministic model applies a
set of inputs or initial conditions and uses one or more equations to produce

A mathematical model is a representation of a phenomenon or system that
is used to provide insights and predictions about system behavior.

Simulation is the application of a model to imitate the behavior of the
system under a variety of circumstances.

Introduction to Computational Modeling    ◾    15

model outputs. The outputs of a deterministic model will be the same for
each execution of the computer code with the same inputs. A probabilistic
model will exhibit random effects that will produce different outputs for
each model run.

Models can also be characterized as static or dynamic. A dynamic
model considers the state of a system over time while a static model does
not. For example, one could have a model of a material like a steel beam
that considered its ability to bear weight without bending under a set of
standard environmental conditions. This would be considered to be a
static model of that system. A dynamic model of the same structure would
simulate how the bearing strength and possible deformation of the beam
would change under stresses over time such as under high temperatures,
vibration, and chemical corrosion.

An example of the steady-state model is the flow of fluid through a pipe. In
the initial, transient state period, the pipe is empty and will fill with fluid
under pressure until the capacity of the pipe is reached. This will be its
steady-state condition. In economics, a steady-state economy is one that
has reached a relatively stable size.

Perhaps making things more confusing, a dynamic model can have
deterministic components. Such a model would track the state of a system
over time and/or space. Given a current state, a deterministic function
may be used to predict the future state of the system. Alternatively, the
future state may be stochastic, which is impacted by random events.

Finally, dynamic models may be characterized as being discrete or
continuous. A continuous model would represent time as a continuous
function, whereas a discrete model divides time into small increments and
calculates its state for each time period. In computer modeling, most (all?)
dynamic models divide time into discrete increments to facilitate rapid
calculations that mimic continuous systems.

1.3.4 Example Applications of Modeling and Simulation

In order to gain insights into system behavior, simulations are used to ask
what if questions about how the system changes under different circum-
stances. How these questions are addressed depends in part on the type

A steady-state model is a model that has gone through a transient state
such as a start-up or warm-up period and arrived at an observed behavior
that remains constant.

16 ◾ Modeling and Simulation with MATLAB® and Python

of model and its underlying mathematical structure. Solving those math-
ematical equations on a computer also leads to differences in program-
ming logic or the algorithms that are used to calculate the most accurate
answer most efficiently. We will discuss some of those algorithms as we go
through the rest of this book. For now, it may help to provide some exam-
ples of different simulation approaches as they relate to various model
types.

Deterministic models consist of one or more equations that character-
ize the behavior of a system. Most such models simplify the system by
assuming that one or more causal variables or parameters are constant for
a single calculation of the model outcomes.

For example, models of people’s car trip behavior assume that the will-
ingness to make a trip is inversely proportional to the trip distance. That
is, people are more likely to make a trip from home to get to a destination
that is closer than the one that is far away. Empirical studies have shown
that this friction of distance changes depending on the nature of the trip.
People are much more willing to make a longer trip to get to work than
they are to do a convenience shopping trip. To simplify the system, these
models assume a constant value of this friction of distance factor for each
type of trip. When such a model is applied to a new urban area, there is
some uncertainty that the constants found in previous studies in different
places match the area where the model is being applied. Thus, a study is
done where the model is run with different but reasonable variations in the
constants to ascertain the impact of those changes on the predicted trips.
Those can then be compared with a sample of real data to calibrate and
validate the model.

Other examples of parametric studies include models of structures
where different environmental conditions will alter system behavior, air
and water pollution models where assumptions are made about the rate of
dispersion of contaminants, and models of drug absorption into the blood
stream where assumptions are made about absorption rates and excretion
rates of the drug within the body. Many models include components that
are both stochastic and deterministic where parametric studies are done
on the deterministic components.

For dynamic models, the focus is on the behavior of the system over
time and sometimes over space. For one group of such models called
systems dynamics models, the state of the system at any time period

Introduction to Computational Modeling    ◾    17

is dependent, in part, on the state of the system at the previous time
period. Simulations calculate the changes in the state of the system over
time. An example is a model of ball being dropped from a bridge. As
it is dropped the ball accelerates due to the force of gravity. At each
time increment, the model will calculate the velocity of the ball and its
position in space. That position will depend on where it was in the previ-
ous time period and how far it was dropped related to its velocity during
that time period. The model will then predict when the ball will hit the
water and at what velocity.

Stochastic models typically will have characteristics in common with
dynamic models. The difference is that one or more of the governing
parameters are probabilistic or could happen by random chance. One
example is a model of the spread of a disease that is passed by human
contact. A susceptible person may make contact with an infected person
but will not necessarily become infected. There is a probability of being
infected that is related to the virility of the disease, the state of health of
the susceptible person, and the nature of the contact. A model of this
system would simulate those probabilities to project the potential spread
of a disease outbreak.

As we go through the rest of this book, we will describe the mathemati-
cal representation of each of these types of models and the programming
steps needed to implement them on the computer. Exercises will involve
the completion of example programs, the use of the model to make pre-
dictions, the analysis of model outcomes, and, in some cases, validation
of model results. The exercises for this chapter focus on the modeling
process and examples of how models have been used to solve research and
production problems.

EXERCISES
 1. Using a graphics program or one of the free concept-mapping or

mind-mapping tools, create a complete conceptual map of the traffic
model introduced earlier in the chapter. You should include all of
the other factors you can think of that would contribute either to the
increase or decrease in the traffic speed that might occur in a real
situation.

 2. Insert another concept mapping example here.

18 ◾ Modeling and Simulation with MATLAB® and Python

 3. Read the executive summary of one of the following reports and be
prepared to discuss it in class:

 a. PITAC report to the president

 b. Simulation-based engineering science report

 c. World Technology Evaluations Center

 4. Using the student website for the book at http://www.intromodeling.
com, choose an example model project in the document example
models for discovery and design as assigned by your instructor. Read
through the available material and then write a brief summary of the
modeling effort and its characteristics using the summary template
provided.

REFERENCES

Bartlett, B. N. 1990. The contributions of J.H. Wilkinson to numerical analysis.
In A History of Scientific Computing, ed. S. G. Nash, pp. 17–30. New York:
ACM Press.

Bell, G. 2015. Supercomputers: The amazing race. (A History of Supercomputing,
1960–2020). http://research.microsoft.com/en-us/um/people/gbell/MSR-TR-
2015-2_Supercomputers-The_Amazing_Race_Bell.pdf (accessed December 15,
2016).

Bell, T. 2016. Supercomputer timeline, 2016. https://mason.gmu.edu/~tbell5/
page2.html (accessed December 15, 2016).

Biesiada, J., A. Porollo, and J. Meller. 2012. On setting up and assessing docking
simulations for virtual screening. In Rational Drug Design: Methods and
Protocols, Methods in Molecular Biology, ed. Yi Zheng, pp. 1–16. New York:
Springer Science and Business Media.

Cmap website. http://cmap.ihmc.us/ (accessed February 22, 2016).
Computer History Museum. 2017. Timeline of computer history, software and

languages. http://www.computerhistory.org/timeline/software-languages/
(accessed January 2, 2017).

Council on Competitiveness. 2004. First Annual High Performance Computing
Users Conference. http://www.compete.org/storage/images/uploads/File/PDF%
20Files/2004%20HPC%2004%20Users%20Conference%20Final.pdf.

Council on Competitiveness. 2009. Procter & gamble’s story of suds, soaps, simu-
lations and supercomputers. http://www.compete.org/publications/all/1279
(accessed January 2, 2017).

Dorzolamide. 2016. https://en.wikipedia.org/wiki/Dorzolamide (accessed December
15, 2016).

Esterbrook, S. 2015. Timeline of climate modeling. https://prezi.com/pakaaiek3nol/
timeline-of-climate-modeling/ (accessed December 15, 2016).

http://www.intromodeling.com
http://www.intromodeling.com
http://www.computerhistory.org/timeline/software-languages/
http://www.compete.org/storage/images/uploads/File/PDF%20Files/2004%20HPC%2004%20Users%20Conference%20Final.pdf
http://www.compete.org/storage/images/uploads/File/PDF%20Files/2004%20HPC%2004%20Users%20Conference%20Final.pdf
http://www.compete.org/publications/all/1279
https://en.wikipedia.org/wiki/Dorzolamide
https://mason.gmu.edu/~tbell5/page2.html
https://mason.gmu.edu/~tbell5/page2.html
http://research.microsoft.com/en-us/um/people/gbell/MSR-TR-2015-2_Supercomputers-The_Amazing_Race_Bell.pdf
http://research.microsoft.com/en-us/um/people/gbell/MSR-TR-2015-2_Supercomputers-The_Amazing_Race_Bell.pdf
http://cmap.ihmc.us/
https://prezi.com/pakaaiek3nol/timeline-of-climate-modeling/
https://prezi.com/pakaaiek3nol/timeline-of-climate-modeling/

Introduction to Computational Modeling    ◾    19

Fatherree, B. H. 2006. U.S. Army corps of engineers, Chapter 5 hydraulics research
giant, 1949–1963, Part I: River modeling, potamology, and hydraulic
structures. In The First 75 Years: History of Hydraulics Engineering at the
Waterways Experiment Station, http://chl.erdc.usace.army.mil/Media/8/5/5/
Chap5.htm. Vicksburg, MS: U.S. Army Engineer Research and Development
Center (accessed October 15, 2016).

Goldstine, H. 1990. Remembrance of things past. In A History of Scientific
Computing, ed. S. G. Nash, pp. 5–16. New York: ACM Press.

Gordon, S. I., K. Carey, and I. Vakalis. 2008. A shared, interinstitutional under-
graduate minor program in computational science. Computing in Science
and Engineering, 10(5): 12–16.

HPC University website. http://hpcuniversity.org/educators/competencies/ (accessed
January 15, 2016).

International Panel on Climate Change. 2013. Climate change 2013—The physi-
cal science basis contribution of working Group I to the fifth assessment
report of the IPCC, New York: Cambridge University Press. http://www.
climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf (accessed
December 15, 2016).

Jameson, A. 2016. Computational fluid dynamics, past, present, and future. http://
aero-comlab.stanford.edu/Papers/NASA_Presentation_20121030.pdf
(accessed December 15, 2016).

Joseph, E., A. Snell, and C. Willard. 2004. Study of U.S. industrial HPC users.
Council on Competitiveness. http://www.compete.org/publications/all/394
(accessed December 15, 2016).

Lax, P. D. 1982. Report of the panel on large scale computing in science and
engineering. Report prepared under the sponsorship of the Department of
Defense and the National Science Foundation. Washington, D.C.: National
Science Foundation.

Lynch, P. and O. Lynch. 2008. Forecasts by PHONIAC. Weather, 63(11): 324–326.
Mayne, E. Automakers trade mules for computers, Detroit News, January 30, 2005,

http://www.jamaicans.com/forums/showthread.php?1877-Automakers-
Trade-Mules-For-Computers (accessed January 25, 2016).

McCartney, S. 1999. ENIAC. New York: Walker and Company.
Mindmapmaker website. http://mindmapmaker.org/ (accessed February 22, 2016).
National Science Foundation. 2006. Simulation-based engineering science: Report

of the NSF blue ribbon panel on simulation-based engineering science.
http://www.nsf.gov/pubs/reports/sbes_final_report.pdf.

Nick, T. 2014. A modern smartphone or a vintage supercomputer: Which is more
powerful? http://www.phonearena.com/news/A-modern-smartphone-or-a-
vintage-supercomputer-which-is-more-powerful_id57149 (accessed January
15, 2016).

Pachauri, R. K. and L. A. Meyer (ed.). 2014. Climate change 2014: Synthesis report.
Contribution of working groups I, II and III to the fifth assessment report of
the intergovernmental panel on climate change. http://www.ipcc.ch/report/
ar5/syr/.

http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf
http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf
http://chl.erdc.usace.army.mil/Media/8/5/5/Chap5.htm
http://chl.erdc.usace.army.mil/Media/8/5/5/Chap5.htm
http://hpcuniversity.org/educators/competencies/
http://aero-comlab.stanford.edu/Papers/NASA_Presentation_20121030.pdf
http://aero-comlab.stanford.edu/Papers/NASA_Presentation_20121030.pdf
http://www.compete.org/publications/all/394
http://www.jamaicans.com/forums/showthread.php?1877-Automakers-Trade-Mules-For-Computers
http://www.jamaicans.com/forums/showthread.php?1877-Automakers-Trade-Mules-For-Computers
http://mindmapmaker.org/
http://www.nsf.gov/pubs/reports/sbes_final_report.pdf
http://www.phonearena.com/news/A-modern-smartphone-or-a-vintage-supercomputer-which-is-more-powerful_id57149
http://www.phonearena.com/news/A-modern-smartphone-or-a-vintage-supercomputer-which-is-more-powerful_id57149
http://www.ipcc.ch/report/ar5/syr/
http://www.ipcc.ch/report/ar5/syr/

20 ◾ Modeling and Simulation with MATLAB® and Python

Prat-Resina, X. 2016. A brief history of theoretical chemistry. https://sites.google.
com/a/r.umn.edu/prat-resina/divertimenti/a-brief-history-of-theoretical-
chemistry (accessed December 15, 2016).

Reed, D. 2005. Computational science: America’s competitive challenge. President’s
information technology advisory committee subcommittee on computa tional
science. http://www.itrd.gov/pitac/meetings/2005/20050414/20050414_
reed.pdf.

Society of Industrial and Applied Mathematics (SIAM). 2001. Graduate education
in computational science and engineering. SIAM Review, 43(1): 163–177.

Vassberg, J. C. A brief history of FLO22. http://dept.ku.edu/~cfdku/JRV/
Vassberg.pdf (accessed December 15, 2016).

Vogelsberger, M., S. Genel, V. Springel, et al. 2014. Properties of galaxies repro-
duced by a hydrodynamic simulation. Nature, 509(8): 177–182. doi:10.1038
/nature13316.

Yasar, O. and R. H. Landau. 2001. Elements of computational science and engi-
neering education. SIAM Review, 45(4): 787–805.

http://www.itrd.gov/pitac/meetings/2005/20050414/20050414_reed.pdf
http://www.itrd.gov/pitac/meetings/2005/20050414/20050414_reed.pdf
https://sites.google.com/a/r.umn.edu/prat-resina/divertimenti/a-brief-history-of-theoretical-chemistry
https://sites.google.com/a/r.umn.edu/prat-resina/divertimenti/a-brief-history-of-theoretical-chemistry
https://sites.google.com/a/r.umn.edu/prat-resina/divertimenti/a-brief-history-of-theoretical-chemistry
http://dept.ku.edu/~cfdku/JRV/Vassberg.pdf
http://dept.ku.edu/~cfdku/JRV/Vassberg.pdf

21

C h a p t e r 2

Introduction to
Programming
Environments

2.1 THE MATLAB® PROGRAMMING ENVIRONMENT
MATLAB® (short for matrix laboratory) is a popular software package in
many different science and engineering disciplines. It has a number of fea-
tures that make it a good package for modeling and simulation. There are
a large number of toolboxes available for license, as well as a number of
community-provided toolboxes to solve common problems. In addition,
as a fourth-generation programming language focused on numerical com-
puting the language has built-in features that make it easy to work with
vectors and matrices, allowing modelers to concentrate on their models,
and not on implementing the details of a matrix operation.

2.1.1 The MATLAB® Interface

We will be using MATLAB R2016a in this book, as it is the most recent
version available at the time of writing. The MathWorks has typically not
made large changes to the user interface very frequently.

Once installed, when you launch MATLAB you will see the default
interface as shown in Figure 2.1. Across the top is a ribbon toolbar with
clearly marked functions, and tabs for Home, Plots, and Apps. We will
return to few functions on the Home ribbon later in this chapter.

22 ◾ Modeling and Simulation with MATLAB® and Python

The large pane in the middle is the Command Window. This pane pro-
vides an interpreter and allows you to type MATLAB commands and see
the results immediately.

The leftmost pane displays the current working directory’s contents.
You can browse through your directory tree using the widget directly
above the three main panes. The current working directory is the first
location where MATLAB will look for files when attempting to execute,
open, or close files. There should be a helloworld.m file; if you double-
click it the Editor will open, showing you the contents of the file and
making it possible to edit and save the updated file. The Editor provides
some rich tools, including syntax coloring, debugging, and more. When
the Editor is open, a context-appropriate menu ribbon appears at the
top, which includes debugging controls. We will return to those later
in this chapter.

The pane to the far right is the Workspace, which displays the variables
currently being used by MATLAB, and their value. Double-clicking on
a variable in this list will open the Variables pane, which allows fuller
inspection and editing of variables, including large matrices. Returning
to the menu ribbon at the top of the window, you should notice Import
Data and Save Workspace, which allow you to quickly import and export
datasets to and from your Workspace.

FIGURE 2.1 Default MATLAB® interface.

Introduction to Programming Environments    ◾    23

2.1.2 Basic Syntax

MATLAB (the application shares a name with its programming language)
is a relatively flexible language that uses certain characters for flow control
such as “{” and “}”. Also, unlike a language like C, which requires a special
termination character at the end of every line (a semicolon), that charac-
ter is optional in MATLAB. However, the decision to include it or not is
important. Including a semicolon at the end of a line will suppress the dis-
play of output related to the execution of that line. Omitting the semicolon
will tell the interpreter to display the result of that command. We will see
examples of this later. We will introduce various concepts in a just-in-
time basis as we work through the course materials. As we go through a
number of the syntax examples later, we suggest you to try them out in the
Command Window, Workspace, or Editor, as appropriate.

2.1.2.1 Variables and Operators
All programming languages provide variables—a method to store and
manipulate data that may be different from one run of the program to the
next—and ways to manipulate those variables. We will introduce some
basics here and will leave some of the more advanced tools until later
chapters.

In the most basic sense, a variable is just a name that we use to refer
to a value that may change over time. In MATLAB, we can simply create
variables as they are needed, without having to declare a variable type
(as is required in many other languages). For example:

Type these commands into the console. Once a variable is declared, it can
be recalled and used in an appropriate calculation. As an example enter this:

y=x*five;

You will note that we included a semicolon, which suppressed the output
of the command, unlike the previous examples. To see the result, type:

y

x = 2
five = 5
z = 3.14159
my_string = 'Hello World!'

Victor
Destacar

24 ◾ Modeling and Simulation with MATLAB® and Python

Now that you have some variable in memory, you can look at the
Workspace to see the list of variables and their current values.

Variables have something called scope, which defines where they
are visible. For example, variables defined in the Command Window are
global; they can be referenced, used, and modified from any other piece
of code. For example, if we define “x” in the Command Window, and then
in my_script.m if we add the command “x”, when we run that program,
it will print the value of “x”.

However, variables defined within a function are only visible within
that function. These are called local variables. We will come back to this
idea later when you begin to create full programs.

You can delete variables in two ways. The first is the clear command:

clear x

The second is to go to the Workspace window, right-click on the variable
you wish to delete, and select Delete from the pop-up menu.

You will also note that the Workspace gives you tools such as rename
and edit, which will be useful.

In computational science, we call variables that hold a single value a
scalar. This is slightly different than the mathematical definition of scalar.
MATLAB supports a number of arithmetic operations (Table 2.1).

You can try some of these calculations in the Command Window by
typing in the left side of the equation. That will be defined as input, and
the results will emerge as output.

Please note that, in MATLAB, some of these operators are also used for
matrix operations, and MATLAB will return an error (or do something
you may not be expecting) if you are using matrices. You can explicitly
tell the interpreter that you want to do scalar operations by prepending
the operators with a period (“.”). For example, to conduct a scalar multi-
plication instead of a matrix multiplication, use “.*”. This can be a concern

TABLE 2.1 MATLAB® Mathematical Operators

Symbol Operation Example

+ Addition 2 + 2 = 4
− Subtraction 4 – 1 = 3
/ Division 9/3 = 3
* Multiplication 8 * 6 = 48
^ Exponential 3 ^ 2 = 9

Introduction to Programming Environments    ◾    25

when doing multiplication, division, and exponentiation. You can include
the “.” safely at any time you want to perform the scalar operation.

MATLAB follows the normally expected order of operations: exponents
and roots, followed by multiplication and division, followed by addition and
subtraction. Specifically, operations should be carried out in the following
order, and for operations at the same level from left to right as shown in
Table 2.2.

For example,

(3 * 2) ** 3 + 6

What happens if we execute this command without the parentheses?
Please note that we have not included all operators. Comparison and

logical operators will be discussed later.

2.1.2.2 Keywords
MATLAB reserves certain words, called keywords, which cannot be used
as variable names. Note that these words will be colored in blue when they
are typed in the Editor or Command Window. They are listed in Table 2.3.

TABLE 2.2 Order of Execution for
Mathematical Operations in MATLAB®

() Items enclosed in parentheses
^ Exponentiation
*, / Multiplication, division
+, − Addition and subtraction
= Assignment

TABLE 2.3 MATLAB® Reserved Keywords

break case
catch classdef
continue else
elseif end
for function
global if
otherwise parfor
persistent return
spmd switch
try while

26 ◾ Modeling and Simulation with MATLAB® and Python

An additional word of warning: It is possible to overwrite a function name
(but not a keyword) with a variable name (and vice versa). Use care when
selecting variable names, or you might experience unexpected errors
when executing code.

2.1.2.3 Lists and Arrays
In programming, we often have a group of homogeneous variables that
represent multiple values of either inputs or outputs from a model. For
example, as inputs we might have traffic counts for a particular location for
different hours and/or different days, multiple values of an environmental
indicator such as air pollution for different times, or a sequence of values of
a model parameter we will use to test its impacts on the model outcomes.
We then would want to store these results in a similar group.

One way to represent such a group of variables in MATLAB is called
an array. Interestingly, in MATLAB everything is an array, including the
scalar values we were working with before. An array is defined to include
places in memory for multiple items indexed by a sequence number. It can
be declared in several ways:

If you type in the first example, you will see that a traffic variable is created
with five items with the values indicated. In the second example (our first
use of a function), an array is created with 365 items initially set to a value
of 0. This could be, for example, space to hold the average daily nitrogen
oxide content in the air. Notice how they are represented in the Workspace.

We can use the index to operate on each of the items in the list in turn
or can operate on any individual item by using its index number. To see a
single value, we use the variable name with the index in parentheses. Try
this and see what happens:

traffic(2)

You should get the value 150. This is because MATLAB starts all lists and
arrays with the index number 1. So if you put traffic(1) in the console, you
should get 200. What happens if you put this in:

traffic

traffic=[200,150,350,235,450];
nox = zeros(1,365);

Introduction to Programming Environments    ◾    27

A one-dimensional array is often called a vector, whereas a two-
dimensional array is called a matrix. Arrays can use matrix mathematics
to operate on the entire array in specific ways we will introduce later.

We have already seen the basic interface for creating vectors and matrices.

Note that we created a 1 × 4 vector and a 2 × 2 matrix with the previous
commands. Examine how these variables are characterized in the Workspace
and how they are shown in the Command Window when you query for the
contents of x and y.

There are several special functions to create certain types of arrays.
An array with all zeros can be created with the “zeros()” function, as we saw
earlier, whereas an array of ones can be created with the “ones()” function. An
identity array can be created with the “eye()” function. Try these functions:

To create an evenly spaced array, MATLAB provides a function called
“colon()”, which also has shorthand using the “:” operator. To create an array
that goes from 0 to 5 (inclusive—so 6 elements), you can type “0:5”. For an
array that starts with 2 and ends with 8, you can type “2:8” or “colon(2,8)”.

z=2:8

You can also specify a custom step size, instead of being restricted to “1” as
the default, by adding a third parameter, located between the start and stop
points. For example, 3:.2:4 will return an array containing [3 3.2 3.4 3.6 3.8 4].

Another useful function for creating vectors containing regularly
spaced values is “linspace()”. Rather than specifying the size of the step,
you specify the number of elements you want in your array. For example,
linspace(3,4,6) will return an array containing [3. 3.2 3.4 3.6 3.8 4].

myarray=linspace(3,4,6)

We can access (and modify) individual elements in arrays in MATLAB.
Use the linspace() example above to create the array “myarray”. We can

x=[1, 2, 3, 4];
y=[1, 2; 3, 4];

x=zeros(6)
y=ones(8)

28 ◾ Modeling and Simulation with MATLAB® and Python

look at the second element of myarray by typing “myarray(2)” in the
Command Window. We can change the value of the second element in
“myarray” simply by using it on the left side of an assignment expression.

myarray(2) = 2

This will turn “myarray” into [3 2 3.4 3.6 3.8 4].
We can also extract portions of arrays called slices. For example, we could

create a slice of “myarray” containing the second and third elements with
the command “myarray(2:3).” The argument is in the form “start:step:stop”
(the same as the “colon()” function). The step argument is optional (and
assumed to be 1 unless specified), and stop can use the keyword end to
mean go to the end of the list. “myarray(1:3)” will return [3 2 3.4], whereas
“myarray(4:end)” will return [3.6 3.8 4]. “myarray(1:2:end)” will select
every other element in the array: [3 3.4 3.8].

2.1.3 Common Functions

We could not possibly exhaustively list every function included in
MATLAB here, much less everything available in the numerous toolboxes.
Throughout the book, we will introduce additional functions as needed,
but Table 2.4 shows a few important ones available in the base MATLAB
program. To use these functions, enclose the target variable inside the
parentheses.

2.1.4 Program Execution

One of the things that makes MATLAB a powerful tool is that you can
both work interactively in the Command Window, and you can also write

TABLE 2.4 Example Built-in Functions for MATLAB®

abs() Absolute value.
mod() Take two noncomplex numbers and return their remainder when using long

division.
whos() Returns the variables in the current Workspace. “whos GLOBAL” returns the

globally scoped variables.
size() Returns the size of the array, meaning the number of items in each dimension.
max() Returns the largest item in the array.
min() Returns the smallest item in the array.
open() Opens a file. We will talk about file input/output in more detail later.
disp() Prints arrays to the display, while not showing the variable name. Useful for

interacting with users of your programs.

Introduction to Programming Environments    ◾    29

complicated programs capturing very detailed work flows to ensure accu-
rate repeatability. Programs can be executed outside of the Command
Window by passing the program file (in this example called myprogram.m)
to the MATLAB executable in your operating system’s command window:

matlab –r myprogram.m

We can also run these programs inside of the Command Window or via
the MATLAB graphical user interface, which provides some additional
debugging capabilities.

2.1.5 Creating Repeatable Code

In MATLAB, creating repeatable code is as simple as typing the commands
you want into a single file with a “.m” extension. One common method for
code development in interpreted languages is to interactively manipulate
variables until you begin to see how to get the results you want, and then
pull those commands from your history and put them into the program
file. Later we will explore flow control—how to execute some blocks of
code but not others—and how to create your own functions or classes, but
for now, we will focus on a simple list of commands to execute.

MATLAB starts off with a file called “helloworld.m” in the default
working directory. You can directly edit this file to explore this func-
tionality (double-click on it to open it in the Editor), but you can also
use New button on the menu ribbon to create other files. Let us edit
helloworld.m to modify the basic Hello World program. Add a line at the
bottom to display (disp) the string “My name is ‘Hal’.”. Your Editor pane
should look similar to Figure 2.2.

You can execute this program by clicking the gray triangle labeled
Run directly above the Editor, which will execute the program in the
Command Window. You should see a helloworld command, followed

FIGURE 2.2 MATLAB® Hello World script.

30 ◾ Modeling and Simulation with MATLAB® and Python

by your code output on the next line. Alternatively, you can simply type
helloworld in your Command Window.

2.1.6 Debugging

MATLAB includes some debugging tools, which can be very useful in
discovering problems in your code.

If you set a breakpoint in your code, simply running the code will trig-
ger the debugger when the breakpoint is reached. Breakpoints allow you
to target a specific point in the code that you wish to stop and investigate.
When the debugger reaches a breakpoint, you can either run commands
in the Command Window to investigate the state of your program, or you
can use the Workspace and Variables panes to look at your data. You can
set breakpoints by clicking on the “-” in the gray space to the left of the line
you wish to stop execution at in the Editor.

The most common bugs you are likely to encounter when working on
modeling and simulation problems will be when your data do not con-
tain the values you expected when executing a certain block of code, and
MATLAB’s debugger is a useful tool for discovering this.

Once you wish to continue execution, you can Step through the pro-
gram one line at a time, Step In to the function of the current line, Step Out
and run until the current function ends, Continue until the debugger hits
the next breakpoint, or Quit Debugging. You will need to exit the debug-
ger to return the console to the normal mode. The exercises include an
example where you can try out the debugger.

2.2 THE PYTHON ENVIRONMENT
Python is a very popular high-level general-purpose programming
language. As an interpreted language, code does not need to be com-
piled and can be run on any system where an interpreter is available.
The core language is Free and Open-Source Software (FOSS), and can
be acquired and used at no cost. There is a very large library of routines
available, including ones specifically designed for scientific computing,
such as SciPy or NumPy.

2.2.1 Recommendations and Installation

There are a number of integrated development environments (IDEs)
available for Python, many of which would be quite good for this course.
We are recommending the use of Spyder, a free IDE, which includes a
number of MATLAB-like features that make it especially useful for

Introduction to Programming Environments    ◾    31

modeling and simulation use. In addition, you will need to download and
install an interpreter; we recommend Anaconda, which is available for
Mac, Linux, and Windows at https://www.continuum.io/downloads and
which provides a bundle of scientific programming packages in the base
installation (including Spyder). We recommend getting Python 3; there
are some minor syntax differences between Python 2 and Python 3, and
Python 3 has a few new features that make it better suited to our purposes.
This book uses Python 3 syntax.

2.2.2 The Spyder Interface

The Spyder IDE is already included in the Anaconda installation. If you
are not using Anaconda, you can find Spyder and installation instructions
at https://pythonhosted.org/spyder/.

To launch Spyder, you can select it from the list of programs for your
computer or you can run Spyder in a terminal or command window.
When you start Spyder, you should see an interface with multiple panes
as shown in Figure 2.3. In the lower right of the window, Spyder pro-
vides an interactive console. By default, it launches IPython, which is an
enhanced interactive Python terminal that provides some improvements
that make it more useful for interactive programming than the standard
Python interpreter. Here, you can type Python commands, which will
be executed immediately.

FIGURE 2.3 Default Spyder interface.

https://www.continuum.io/downloads
https://pythonhosted.org/spyder/

32 ◾ Modeling and Simulation with MATLAB® and Python

The upper right region of the window shows the Help pane. It will auto-
matically show documentation for a function or object being instantiated
in the editor or console, or you can type a function name in the Object field
at the top of the window to pull up the corresponding documentation.

In the same pane as the Help is the Variable Explorer. Clicking on the
Variable Explorer button at the bottom of the pane will switch the view to
the Variable Explorer. This gives you a view into the global variables for
the current console. It will be empty until you enter commands to create
or modify variables in the console or run a script in the editor. Most com-
mon variable types can be displayed, and variables can be edited in this
interface. You can do quick plots of arrays and show matrices as images.

You can also save sets of variables in a Spyder-specific format, MATLAB
data format, or HDF5 format by using the Disk icon to the right of the pane.
In addition, you can import data from a large variety of supported formats
using the Import Data icon (downward pointing arrow icon).

The left pane shows the Spyder editor. It enables editing of Python
(and other languages!) and includes features such as syntax coloring,
function/class/method browsing, code analysis, introspection, and more.
At the top of the Spyder window are debugging controls that allow you
to execute the Editor pane’s current file in the IPython console; we will
cover those in more detail later.

2.2.3 Basic Syntax

Python uses whitespace to designate code blocks. In short, this means
indentation is how we group lines of code together for flow control. This
will become clearer later. Also, unlike many other languages (including
MATLAB), semicolons are not used as line terminators. We will fill in
other details in a just-in-time basis as we work through the course materi-
als. As we go through a number of the syntax examples below, we suggest
you to try them out in the Spyder interface by inserting them in console,
help, or editor as appropriate.

2.2.3.1 Variables and Operators
All programming languages provide variables—a method to store and
manipulate data that may be different from one run of the program to the
next—and ways to manipulate those variables. We will introduce some
basics here, and leave some of the more advanced tools until later chapters.

In the most basic sense, a variable is just a name that we use to refer
to a value that may change over time. In Python, we can simply create

Introduction to Programming Environments    ◾    33

variables as they are needed, without having to declare a variable type
(as is required in many other languages). For example:

Type these commands into the console. Once a variable is declared,
it can be recalled and used in an appropriate calculation. As an example,
enter this:

y=x*five

To see the result, type:

y

Now that you have some in memory, open the variable explorer to see the
list of variables and their current values.

Variables have something called scope, which defines where they are
visible. For example, variables defined in the console are global; they
can be referenced, used, and modified from any other piece of code.
For example, if we define “x” in the console, and then in temp.py if we
add the command “print(x)”, when we run that program, it will print the
value of “x”.

However, variables defined within a code block (such as a func-
tion or an indented section of code) are only visible within that code
block, and any dependent blocks (subblocks). These are called local
variables. We will come back to this idea later when you begin to create
full programs.

You can delete variables in two ways. The first is the del command:

del x

The second is to go to the Variable Explorer, right-click on the variable you
wish to delete, and select Remove from the pop-up menu.

You will also note that the Variable Explorer gives you tools such as
rename and edit that will be useful.

x = 2
five = 5
z = 3.14159
my_string = "Hello World!"

34 ◾ Modeling and Simulation with MATLAB® and Python

In computational science, we call variables that hold a single value a
scalar. This is slightly different than the mathematical definition of scalar.
Python supports a number of arithmetic operations, as shown in Table 2.5.

You can try some of these calculations in the console by typing in the
left side of the equation. That will be defined as input, and the results will
emerge as output.

Python follows the normally expected order of operations: exponents
and roots, followed by multiplication and division, followed by addi-
tion and subtraction. Specifically, operations should be carried out in the
following order, and for operations at the same level from left to right as
shown in Table 2.6.

For example,

(3 * 2 % 4 // 2) ** 3 + 6

What happens if we execute this command without the parentheses?
Please note that we have not included all operators. Comparison and

logical operators will be discussed later.

2.2.3.2 Keywords
Python reserves certain words, called keywords, which cannot be used as
variable names. Note that Spyder will color these words in magenta when
they are typed in the Editor or console. They are listed in Table 2.7.

TABLE 2.5 Python Mathematical Operators

Symbol Operation Example

+ Addition 2 + 2 = 4
− Subtraction 4 − 1 = 3
/ Division 9/3 = 3
% Modulo 7 % 2 = 1
* Multiplication 8 * 6 = 48
// Floor division 7//2 = 3
** Exponential 3 ** 2 = 9

TABLE 2.6 Order of Execution for Mathematical Operations in Python

() Items enclosed in parentheses
** Exponentiation
*, /, %, // Multiplication, division, modulo, floor division
+, − Addition and subtraction
= Assignment

Introduction to Programming Environments    ◾    35

An additional word of warning: It is possible to overwrite a function
name with a variable name (and vice versa). Use care when selecting
variable names, or you might experience unexpected errors when exe-
cuting code.

2.2.3.3 Lists and Arrays
In programming, we often have a group of homogeneous variables that
represent multiple values of either inputs or outputs from a model. For
example, as inputs we might have traffic counts for a particular location for
different hours and/or different days, multiple values of an environmental
indicator such as air pollution for different times, or a sequence of values of
a model parameter we will use to test its impacts on the model outcomes.
We then would want to store these results in a similar group.

One way to represent such a group of variables in Python is called a list.
A list is defined to include places in memory for multiple items indexed by
a sequence number. It can be declared in several ways:

traffic=[200,150,350,235,450]
nox = [0.]*365

TABLE 2.7 Python Reserved Keywords

and import
as in
assert is
break lambda
class none
continue nonlocal
def not
del or
elif pass
else raise
except return
false true
finally try
for while
from with
global yield
if

36 ◾ Modeling and Simulation with MATLAB® and Python

If you type in the first example, you will see that a traffic variable is
created with five items with the values indicated. In the second example,
a list is created with 365 items initially set to a value of 0. This could be,
for example, space to hold the average daily nitrogen oxide content in
the air. Notice how they are represented in the Variable Explorer.

We can use the index to operate on each of the items in the list in turn
or can operate on any individual item by using its index number. To see a
single value, we use the variable name with the index in brackets. Try this
and see what happens:

traffic[1]

You should get the value 150. This is because Python starts all lists and
arrays with the index number 0. So if you put traffic[0] in the console, you
should get 200. What happens if you put this in:

traffic

For many programming applications, we will need an array of values
that have a more specific mathematical definition. An array is an ordered
sequence of values much like a list. A one-dimensional array is often called
a vector, whereas a two-dimensional array is called a matrix. Unlike a list,
numerical arrays can use matrix mathematics to operate on the entire array
in specific ways we will introduce later. For now, we just wish to define how
an array is declared in Python. To do so, we need to import a special module
into our Python environment called NumPy. We can import NumPy into
our code and rename it as np with the following command:

import numpy as np

For the rest of this textbook, when using functions or objects provided by
NumPy, we will assume that it has been imported as np, which is consistent
with the documentation for NumPy. Please note that renaming a package
upon import does not rename the package in the Help.

The basic interface for creating vectors and matrices is NumPy’s “array()”
function, and it can accept a list object as input.

x=np.array([1, 2, 3, 4])

y=np.array([[1, 2], [3, 4]])

Introduction to Programming Environments    ◾    37

Note that we created a 1 × 4 vector and a 2 × 2 matrix with the previous
commands. The data type created by array() is ndarray, which is distinct
from a list, and has some supporting functions that lists do not have.
Examine how these variables are characterized in the variable explorer and
how they are shown in the console when you query for the contents of x and y.

As with lists, Python arrays are what we call zero-indexed. What this
means is that the very first element in the array (in any dimension) is in
the position labeled zero. This is a very common convention in many pro-
gramming languages, compared with the everyday convention of calling
the first element index 1. This will be important when iterating over arrays
or selecting individual elements or ranges.

The array() function has a number of optional parameters, which we
will not cover in detail. There are several special NumPy functions to
create certain types of arrays. An array with all zeros can be created with
the “zeros()” function, whereas an array of ones can be created with the
“ones()” function. An identity array can be created with the “eye()” func-
tion. Try these functions:

x=np.zeros(6)
y=np.ones(8)

One NumPy function we will use heavily will be “arange()”. In its most
simple form, it will give you a vector starting at zero and counting by
one to the end point you specify. For example, arange(5) will return an
ndarray containing [0, 1, 2, 3, 4]. Alternatively, you can supply optional
arguments to specify the start point and the size of the step. For example,
arange(3,4,.2) will return an ndarray containing [3., 3.2, 3.4, 3.6, 3.8].

z=np.arange(6)

Another useful NumPy function for creating vectors containing regularly
spaced values is “linspace()”. Rather than specifying the size of the step,
you specify the number of elements you want in your ndarray. For example,
linspace(3,4,6) will return an ndarray containing [3., 3.2, 3.4, 3.6, 3.8, 4.].

myarray=np.linspace(3,4,6)

We can access (and modify) individual elements in arrays in Python. Use
the linspace() example above to create the array “myarray”. We can look
at the second element of myarray by typing “myarray[1]” in the console.

38 ◾ Modeling and Simulation with MATLAB® and Python

Remember that previously we explained that Python is zero-indexed,
meaning myspace[0] refers to the first element, and myspace[1] refers to
the second. We can change the value of the second element in “myarray”
simply by using it on the left side of an assignment expression.

myarray[1] = 2

This will turn “myarray” into [3., 2., 3.4, 3.6, 3.8, 4.].
We can also extract portions of arrays called slices. For example, we

could create a slice of “myarray” containing the second and third ele-
ments with the command “myarray[1:3]”. The argument is in the form
“start:stop:step”, and it does not include the stop element. The “step” argu-
ment is option (and assumed to be 1 unless specified), whereas start and
stop, if not specified, are assumed to be the beginning and end of the array.
“myarray[:3]” will return [3., 2., 3.4], whereas “myarray[3:]” will return
[3.6, 3.8, 4.]. “myarray[::2]” will select every other element in the array,
starting with position zero: [3., 3.4, 3.8].

2.2.4 Loading Libraries

Code libraries are bundled up in things called modules. To make those
modules available in our programs, we need to import them as we did for
the NumPy module earlier. For example, a module called math provides
a number of basic mathematics functions. To load that module, we issue
this command in our script or IPython console:

import math

Now, we can execute functions from the math module. For example, we can
find the square root of a value:

math.sqrt(9)

Go ahead and try out these commands in the console.
Importing a module is not persistent; when you restart a console, you

will need to reimport any modules. Remember, you can find documenta-
tion for modules and functions in the Help. Now that you have imported
the math module, type the term math.sqrt in the Help pane to get the doc-
umentation for this command. You can also put your cursor on the line
in the console where you typed math.sqrt and hit the Control and I key to
get the same object feedback.

Introduction to Programming Environments    ◾    39

Rather than importing an entire module, we can also import just a
single function of that module. This has the advantage of simplifying
the call to the function later in your code. Returning to the square root
function:

from math import sqrt

Now, you can directly execute sqrt:

sqrt(9)

However, other functions in the math module will not be available.

2.2.5 Common Functions

We could not possibly exhaustively list every function included in the
common modules here, much less everything available in the Anaconda
distribution. Throughout the book, we will introduce additional functions
as needed, but Table 2.8 shows a few important ones from the builtins
module (available without loading). To use these functions, enclose the
target variable inside the parentheses.

TABLE 2.8 Example Built-in Functions for Python

abs() Absolute value.
divmod() Take two noncomplex numbers and return their quotient and remainder

when using long division.
float() Turns the input string or number into a floating-point number.
globals() Returns a variable called a dictionary that shows the current global symbol

table. This includes everything you can see in the Variable Explorer,
but also things like loaded modules and command history.

int() Turns the input string or number into an integer.
len() Returns the number of items in the input. Accepts strings, lists, dictionaries,

sets, etc.
max() Returns the largest item in the input list.
min() Returns the smallest item in the input list.
open() Opens a file. We will talk about file input/output in more detail later.
print() Prints objects, either to a specific file or to the display. Useful for interacting

with users of your programs.
range() Creates lists of arithmetic progressions. Will be very useful; read the

documentation in the Help for more details. We will visit a very similar
function later in this chapter.

40 ◾ Modeling and Simulation with MATLAB® and Python

2.2.6 Program Execution

One of the things that makes Python a powerful tool is that you can both
work interactively in the IPython console, and you can also write com-
plicated programs capturing very detailed work flows to ensure accurate
repeatability. Programs can be executed outside of the Spyder environment
by passing the program file (in this example called myprogram.py) to the
python interpreter:

python myprogram.py

We can also run these programs inside of the Spyder environment, which
provides some additional debugging capabilities.

2.2.7 Creating Repeatable Code

In Python, creating repeatable code is as simple as typing the commands
you want to execute into a single file with a “.py” extension. One com-
mon method for code development in interpreted languages is to inter-
actively manipulate variables until you begin to see how to get the results
you want, and then pull those commands from your history and put them
into the program file. Later we will explore flow control—how to execute
some blocks of code but not others—and how to create your own func-
tions, classes, or modules, but for now we will focus on a simple list of
commands to execute.

The Spyder Editor starts off with a file called “temp.py” opened. You
can directly edit this file to explore this functionality, but you can also
use New File under the File menu to create other files. Let us edit temp.py
to create the basic “Hello World” program. Add a line at the bottom to
print the string “Hello World!”. Your Editor pane should look similar
to Figure 2.4.

You can execute this program by clicking the “Run File” button (looks
like a “Play” button) directly above the Editor, which will execute the pro-
gram in the IPython console. You should see a “runfile()” command cre-
ated by the IDE, followed by your code output on the next line.

Here is an Easter Egg: type “import __hello__” in the console. (Note:
“__” is a repeated underscore character.)

Introduction to Programming Environments    ◾    41

2.2.8 Debugging

One advantage to Spyder over testing code directly in the interpreter as
described above is that Spyder includes some debugging tools, which can
be very useful in discovering problems in your code.

To launch the debugger, click on the “Debug File” button, which shows
a play and pause button next to each other. (Hovering your mouse over
any button in the Spyder toolbar will display a tip in the lower left of
the window explaining what the button does.) Breakpoints allow you to
target a specific point in the code that you wish to stop and investigate.
When the debugger reaches a breakpoint, you can either run commands
in the console to investigate the state of your program, or you can use
the Variable Explorer to look at your data. You can set breakpoints by
double-clicking in the gray space to the left of the line you wish to stop
execution at; the debugger will run to that line by default or will stop at
the very first line otherwise.

The most common bugs you are likely to encounter when working
on modeling and simulation problems will be when your data does not
contain the values you expected when executing a certain block of code,
and Spyder’s debugger is a useful tool for discovering this.

Once you wish to continue execution, you can (examining the debug-
ging buttons from left to right) step through the program one line at a

FIGURE 2.4 Python Hello World script.

42 ◾ Modeling and Simulation with MATLAB® and Python

time, step into the function of the current line, run until the current func-
tion ends, run until the debugger hits the next breakpoint, or exit. You
will need to exit the debugger to return the console to the normal mode.
The exercises include an example where you can try out the debugger.

EXERCISES
 1. Basic Arithmetic

 Convert the following equations into valid MATLAB or Python
commands, and submit both the input and output of the command
from the interpreter.

 a. ()2 3 7+ ×

 b. 3

2

3

 c. 12 3 3

1 2 7

4

4 6

.

. .

×
+

 2. Creating and Editing Matrices

 Create the following matrices, and submit both the input and output
of the command from the interpreter.

 a. []4 6 2

 b.
3 5 3 14

7 0 25

. .

.











 c.
1 0 0

0 1 0

0 0 1

















 d. 1 3 1 6 1 9 2 2 2 5.[]

 For the following problems, create the matrices as described, and
then edit as directed, and submit the editing command and the
output from the interpreter.

 e. Create the array 1 2 3 4 5[], and replace the third ele-
ment with the number 9.

Introduction to Programming Environments    ◾    43

 f. Create the array 3 6 2 9 12[], and replace the second
element with the value in that location cubed. That is, cube the
value found in that location and store it back in the same location.

 g. Create the identity matrix
1 0 0

0 1 0

0 0 1

















 and replace the element

 at location 2,3 with the number of elements in the identity matrix.

 3. Saving and loading data

 Use the materials on the book website to download the dataset nec-
essary for these problems in either MATLAB or Python.

 a. Load the Chapter 2 dataset (Chapter2.m or Chapter2.py). What is
the value in variable “x”?

 b. Clean out the variables in your Workspace or Variable Explorer.
Load the Chapter 2 dataset. Modify the variable “z” to equal
x y× . Save the dataset, and submit.

 4. Debugging

 Use the materials on the book website to download the sample code
necessary for these problems in either MATLAB or Python.

 a. Open the code in the Editor. Set a breakpoint on line 22. Run
the code in the debugger, and report the value of the variable “x”
when the code hits the breakpoint.

 b. Open the code in the Editor. Set a breakpoint on line 19 and on
line 24. Run the code in the debugger, and report the value of the
variable “y” every time the code hits the first breakpoint. Then
report the value of “z” when the code hits the second breakpoint.

http://taylorandfrancis.com

45

C h a p t e r 3

Deterministic
Linear Models

3.1 SELECTING A MATHEMATICAL
REPRESENTATION FOR A MODEL

Each of the model examples presented in Chapter 1 is represented by one
or more mathematical equations whose goal is to accurately mimic the
behavior of the real system. The logical question that arises to the model-
ing neophyte is how does one choose the appropriate set of equations? This
is where computer modeling is closely tied to the traditional approaches to
the advancement of science—theory and experimentation.

The initial approach to understanding the world around us was for
 people to observe and experiment. By recording the observations of phe-
nomena over time and space, it is possible to begin to recognize patterns in
changes and the possible underlying causes of those changes. Experiments
where the underlying conditions are controlled provide further insights
into the relationships between the observed effects and their possible
causes. Those observations can then be used to represent the changes in
mathematical terms.

Over time the level of knowledge related to a particular type of
 phenomenon increases allowing scientists to formulate theories about
the relationships that go beyond the recorded data. The ability to confirm
a particular theory is then tied to our ability to accurately observe and
measure the system through additional experimentation and simulation.

46 ◾ Modeling and Simulation with MATLAB® and Python

In this way, some of our theories become the laws we learn about in study-
ing science and engineering.

The most appropriate mathematical model of a phenomenon is not
always the most complex or sophisticated approach. The approach we use is
tied to the purpose of the modeling effort and the required degree of accu-
racy associated with the use of the model. For example, we might be inter-
ested in the impacts of adding new manufacturing facilities on the quality
of the air in a particular region for long-range planning purposes. The ini-
tial model of air quality might consider the local air circulation conditions
and the existing levels of pollution but only make a general forecast of a
 typical manufacturing facility and its air emissions to determine roughly
how much additional industry, if any, could be added without causing
major air quality problems. This simple model would make many assump-
tions about the nature of the emissions from this typical plant in the con-
text of a simplified range of weather conditions. This type of approach is
often called a screening model, meaning it is sacrificing accuracy to allow a
rapid determination of the general nature of the situation that can be done
without a large investment in data collection and model development.

On the other hand, if a particular manufacturing facility is proposed
in the same region, we will want to use a more sophisticated air quality
model that takes into account the nature of the emissions that the plant
will make, the potential reductions in emissions that can be achieved with
pollution control equipment, and a much more refined look at the air cir-
culation in the region to determine whether the resulting air quality will
cause harm to human health and the environment.

This is the first of a series of chapters where we will provide examples
of models with differing mathematical representations. These will include
deterministic models with linear and nonlinear representations, proba-
bilistic models, static models, and dynamic models where changes occur
over time and/or space. We begin with this chapter on linear models.

3.2 LINEAR MODELS AND LINEAR EQUATIONS
Imagine a warehouse and loading dock with a load of copier paper to be
transferred to a semitruck for shipment. The load consists of 100 pallets
of paper that can be moved from the warehouse to the truck by a forklift.
The first pallet has been loaded and contains 40 boxes and includes 4 boxes
of colored paper. The remainder of the pallets contains 36 boxes of white
paper each. The forklift can move one pallet at a time. Given the layout of
the warehouse, it will take from one to three minutes for the forklift to

Deterministic Linear Models    ◾    47

get to a pallet, traverse the distance to the truck, and drop the pallet into
position on the truck. The average amount of time to load a pallet can be
assumed to be two minutes. Table 3.1 represents the first several parts of
the load represented over time where the first load takes the pallet of 40,
and subsequent loads take the regular pallets.

The first pallet contains 40 boxes, leaving 3564 (99 pallets × 36 boxes)
left to load. The second and all subsequent loads contain 36 boxes, for a
difference in the remaining load of 36 fewer boxes each time. The pattern
of change associated with the loading of the truck can be characterized by
looking at the amount of change in the boxes to be loaded over time. After
the initial pallet is loaded, this can be observed to be a constant making
this relationship linear. The exact equation for this model is

 b k= +36 40 (3.1)

where:
b is the number of boxes on the truck
k is the number of trips made by the forklift

The accumulated time for any particular trip will be 2k since it takes an
average of two minutes for each trip. We could use this linear equation to
create a simple, linear model of the loading process that would track the
number of loaded boxes over time. We can also use the relationships to
determine how long it will take to load the truck. How long will it take?

The general linear equation is written as follows:

 Y aX b= + (3.2)

In this equation, b is called the Y intercept or the value of Y when X is
zero. If we graph a line, this will be the place where the line crosses the Y axis.
The value of a represents the slope of the line or the ratio between the

TABLE 3.1 Truck Loading Data

Trip Time (minutes) Boxes in the Truck First Difference

0 0 40 40
1 2 76 36
2 4 112 36
3 6 148 36
…

48 ◾ Modeling and Simulation with MATLAB® and Python

change in Y versus the change in X. An illustration of Equation 3.1 for the
loading of the paper pallets is shown as Figure 3.1.

There are a number of phenomena that can be represented by a linear
model. One of these is a model of the deformation of a spring. The force
related to the spring is measured in Newtons (N). One Newton is the
force that will accelerate 1 kg of mass at a rate of 1 m/s2.

The system is represented by Hooke’s law:

 F kx= (3.3)

where:
F is the spring force (N)
k is the spring constant (N/mm or N/cm)
x is the deformation of the spring

Any model where a change in the independent variable (the cause) causes
a constant change in the dependent variable (the effect) is a linear model.
A linear model can then be identified by calculating the slope or the ratio
of change in Y versus change in X for each pair of data points. That slope
will be constant if the relationship is linear.

y = 36x + 40

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7

N
um

be
r o

f b
ox

es
 lo

ad
ed

Number of trips

Number of boxes loaded over time

FIGURE 3.1 Linear equation graph showing boxes loaded over time.

Deterministic Linear Models    ◾    49

When a force is applied to a spring, it returns to its original upstretched
shape when released as long as the force exerted is within its elastic
range. The spring constant is dependent upon the nature of the material
used to make the spring as well as its winding and shape. The spring
constant can be found experimentally by hanging dead weights on the
spring. To see an illustration of this system, go to https://phet.colorado.edu/
and choose Play with Simulations. From there, choose enter spring in
the search box and then choose the Hooke’s Law (HTML5) simulation.
Start the simulation and then choose the Intro section. Check all of
the measurement boxes and then do your own experiment. For a given
spring constant, apply forces of 10, 20, 30, and 40 N and record the val-
ues of the deformation. You can plot the force versus the displacement
using graph paper or by entering the data into MATLAB® or Python
and by creating a simple plot. You should observe that the relationship
is linear.

The resistance of a material to an electric current is also represented as
a linear equation:

 R
l

a
= ρ (3.4)

where:
R is the resistance
ρ is the resistivity
l is the length of the sample
a is the cross-sectional area of the sample

3.3 LINEAR INTERPOLATION
There are situations in which a sample of data is presented that provides
selective pairs of points representing their relationship. One example is a
reference table such as Table 3.2 that shows the relationship between alti-
tude and the density of air. If we wanted to estimate the air density at 2250 m,
we can use the values at 2000 and 2500 m to make a linear interpolation,
assuming that the relationship is linear.

This assumption makes it possible to use the ratio between the known
points and the target value to solve for the estimate of the unknown value.
We can define the known values of the lookup column as (x1, x2) and the
corresponding values of the related column as (y1, y2). We have the target

https://phet.colorado.edu/

50 ◾ Modeling and Simulation with MATLAB® and Python

value of the lookup function x0 but wish to estimate the value of y0 by
 linear interpolation. Then:

 y y

x x

y y

x x
0 1

0 1

2 1

2 1

−
−

= −
−

 (3.5)

This can be solved for y0:

 y y x x
y y

x x
0 1 0 1

2 1

2 1

= + − −
−







() (3.6)

For our example in Table 3.2, this would be as follows:

 y0 1 006 2250 2000
1 006 0 957

2000 2500
0 9815= + − −

−






 =. ()

. .
. (3.7)

Linear interpolation might also be used when we have a sample of spatially
distributed data points representing a continuous variable such as air tem-
perature or precipitation. If we are willing to assume that the values of the

TABLE 3.2 Air Density Changes with Altitude

Altitude (m) Air Density (kg/m3)

0 1.225
500 1.167
1,000 1.112
1,500 1.058
2,000 1.006
2,500 0.957
3,000 0.909
3,500 0.863
4,000 0.819
4,500 0.777
5,000 0.736
6,000 0.660
7,000 0.590
8,000 0.526
9,000 0.467
10,000 0.413
11,000 0.365
12,000 0.312
13,000 0.226
14,000 0.228
15,000 0.195

Deterministic Linear Models    ◾    51

unknown points between the samples are linearly distributed, we can use
linear interpolation to estimate the intermediate values. However, there
are often intervening variables that would violate that assumption so we
must apply it with caution. For example, the air temperature is greatly
impacted by the nature of the land cover. Surfaces such as asphalt and con-
crete absorb more solar radiation and reradiate it back into the atmosphere
as heat, whereas vegetated areas like forests or grasslands will reflect more
of the sunlight keeping those areas cooler. We would have to ascertain that
the land cover is relatively constant between two sample points to make
the case that linear interpolation of the data is justified.

3.4 SYSTEMS OF LINEAR EQUATIONS
There are a number of phenomena that are characterized by systems of lin-
ear equations where there are multiple linear equations. These are repre-
sented with a series of linear equations and multiple unknowns that must be
solved simultaneously. Examples include a number of engineering problems
including voltage in electrical circuits, chemical reactors, and static forces
in structures. In the social sciences, econometric models of consumer and
behavior, models of voting behavior, and models of land use and population
change have been developed using simultaneous linear equations.

The solution of these problems requires an understanding of linear alge-
bra and the algorithms used to solve the problems on a computer. Details
of those operations are beyond the scope of this chapter. Both MATLAB
and Python have built-in routines to solve these problems. In MATLAB,
the matrix functions that will be introduced in a later chapter are used to
solve simultaneous linear equations. In Python, the NumPy library has a
set of routines that perform the same functions.

For those who are interested in some examples and further discussion
of these methods, some example problems from engineering can be found
in Chapra (2008, pp. 203–235) and Moaveni (2014, pp. 708–711). Landau
et al. (2015, pp. 145–149) offer some examples in Python with exercises
related to physics problems.

3.5 LIMITATIONS OF LINEAR MODELS
Linear models can offer a good approximation of certain phenomena but need
to be used with special caution when making forecasts. All phenomena reach
limits as you approach the extremes of their distributions—whether at the
low end (zero or negative values for those that can go negative) or at the high
end (at values that exceed normal behavior or result in nonlinear behavior).

52 ◾ Modeling and Simulation with MATLAB® and Python

Extrapolating beyond the available data used to create or validate a model is
prone to major errors, whether the phenomenon we are modeling is linear or
nonlinear in nature. For systems which we approximated with a linear rep-
resentation, extrapolation may be doubly dangerous as there are very few
circumstances where something will increase without reaching some limits
that cause the system behavior to change.

For example, if we think about the truck loading example, we could
forecast adding additional forklifts to speed the process. However, at
some point, the average amount of time it takes for a forklift to complete
a cycle of pickup and delivery will slow as additional forklifts will need
to wait in line to get into or out of the truck or avoid each other inside
the warehouse. If we did not think about this, we could easily add too
many forklifts and forecast a directly proportional, linear reduction in
loading times. Since forklifts and their operators are expensive, we could
potentially raise costs without the requisite benefits of efficiency that we
might desire.

EXERCISES
 1. Examine the three datasets shown in Table 3.3. Which of these are

linear relationships?

 2. A new fast food chain has studied its success in its initial metropoli-
tan market. They found that their net income from the opening and
operation of each site could be represented by this linear equation:

 I b= ∗ −275 000 100 000, , (3.8)

TABLE 3.3 Example Datasets for Assessment
of Linearity

Dataset 1 Dataset 2 Dataset 3

X Y X Y X Y
3 14 1 21 1.5 −0.5
6 20 2 35 2.5 4.5
9 26 3 57 3.5 9.5
12 32 4 87 4.5 14.5
15 38 5 125 5.5 19.5
18 44 6 171 6.5 24.5

7 225 7.5 29.5
8 287 8.5 34.5

Deterministic Linear Models    ◾    53

 where I represents the net revenue in dollars over one year, b repre-
sents the number of branches, and the constant represents the upfront
costs of creating a new location. They have tested this relationship in
their current market where they have 10 branches. If they are going
to open a new market in a different metropolitan region, what would
their net income be if they opened 4 branches, 8 branches, and 12
branches? Will this model work for all of those situations? What are
the uncertainties to applying this model in this way?

 3. We have implemented a model of the time it will take to get from
our home to work comparing two major potential routes: one using
local and major streets, and one that makes part of the trip on an
Interstate highway. Use the materials on the book website to down-
load the instructions and the partially completed code in either
MATLAB or Python. Complete the code and make the model runs
required to answer the questions about this model.

 4. Water towers are used to store water and to release the treated water
under sufficient pressure to reach the buildings in its service area
and maintain pressure to keep the water from becoming contami-
nated. Using the materials on the book website to download the
instructions and the partially completed code that predicts how tall
the water tower needs to be to achieve the minimum necessary pres-
sure. Complete the code in either MATLAB or Python and make the
runs necessary to answer the questions about this model.

REFERENCES

Chapra, S. C. 2008. Applied Numerical Methods with MALAB for Engineers and
Scientists, 2nd ed. Boston, MA: McGraw-Hill.

Landau, R. H., J. P. Manuel, and C. C. Bordeainu. 2015. Computational Physics
Problem Solving with Python, 3rd ed. Weinheim, Germany: Wiley.

Moaveni, S. 2014. Engineering Fundamentals, 5th ed. Boston, MA: Cengage
Learning.

http://taylorandfrancis.com

55

C h a p t e r 4

Array Mathematics in
MATLAB® and Python

4.1 INTRODUCTION TO ARRAYS AND MATRICES
Thus far, our programming has focused on relatively simple representations
of mathematical expressions and the syntax that can be used to declare
and operate on variables. We have created arrays and matrices for the
purpose of holding a range of values as input data or the intermediate or
final values of our calculations. The outputs were calculated by applying
the same formula to each element of the array and stored as values in the
output arrays.

Beyond these simple calculations, both programming environments
have the capability of executing matrix mathematics functions, which have
several advantages. First, some calculations can be applied to the entire
matrix at one time. In doing so, the code is simpler to write and the execu-
tion is much faster than the incremental calculation of individual elements
contained in a loop. As problems become larger, the savings in computa-
tional resources can become very significant. We provide some examples
in the exercises at the end of the chapter.

For a wide range of other calculations in science and engineering,
matrix algebra is the most direct way of solving a variety of problems.
Although linear and matrix algebra is not required to complete the mod-
eling work presented in this book, it is still important to understand the
nature of those calculations and their associated programming syntax

56 ◾ Modeling and Simulation with MATLAB® and Python

so that the appropriate syntax can be used in the problems we present.
Toward this end, we present a brief overview matrix mathematics. This
is followed by the presentation of the programming syntax in MATLAB®
and Python, respectively. For those with a background in matrix math-
ematics, we provide some additional examples and references at the end
of the chapter.

4.2 BRIEF OVERVIEW OF MATRIX MATHEMATICS
Matrix notation represents a matrix in row and column order. Thus a 2 × 3
matrix as shown in Equation 4.1 has two rows and three columns. If we
define it as the matrix [A], we can illustrate some matrix operations. If
we want to multiply the matrix by a scalar (a single constant), we have to
multiply each element by the scalar. Thus, [A]∗2 will give an output matrix
with the values 2, 4, 6, 8, 10, 12.

 []A =










1 2 3

4 5 6
 (4.1)

Similarly, matrix addition and subtraction are also done element by ele-
ment. However, for the calculations to work correctly, the matrices must
have the same dimensions. Equations 4.2 through 4.4 illustrate the results
of matrix addition and subtraction:

 []B =










10 11 12

13 14 15
 (4.2)

 [] []A B+ =










11 13 15

17 19 21
 (4.3)

 [] []B A− =










9 9 9

9 9 9
 (4.4)

Another operation we can perform on a matrix is to get its transpose. The
transpose of a matrix makes the rows into columns and columns into
rows. This transformation can be used to transform row vectors into col-
umn vectors or to provide a different view of a data table.

The calculations in matrix algebra for multiplication are not the same
as the element by element procedure in addition and subtraction. A matrix
of size m × n can only be multiplied by a matrix that is of size n × p.

Array Mathematics in MATLAB® and Python    ◾    57

That is the number of rows in the first matrix must equal the number of
columns in the second matrix. The product is then a matrix of size m × p.
Matrix multiplication is not commutative—that is the matrix multiplica-
tion of [A] × [B] will not produce the same result as [B] × [A].

The computation of the multiplication is the sum of the scalar products
of ith row of the first matrix with the elements of the jth column of the
second matrix. More specifically, the calculation:

 [] [] []C A B= × (4.5)

where:
[A] is of the size m × n
[B] is of the size n × p
[C] is of the size m × p

Then

 c a bij ik kj

k

n

=
=

∑
1

 (4.6)

where i, j, and k are the row and column indices for the input and output
matrices.

This is illustrated by Equations 4.7 through 4.9:

 []A =










1 1 3

2 1 0
 (4.7)

 []B =
















1 2

0 2

2 1

 (4.8)

 []C =










7 7

2 6
 (4.9)

There are also several types of special matrices that are built in to both
programming environments. One of these is the identity matrix. The
identity matrix is a matrix that has ones in the diagonal and zeros every-
where else. The identity matrix is important in understanding the concept
of the inverse of a matrix. When the inverse of a matrix is multiplied by

58 ◾ Modeling and Simulation with MATLAB® and Python

the original matrix, that product is the identity matrix. In matrix nota-
tion, the inverse of a matrix [A] is often represented as [A′]. Thus:

 [A] A I[] []′ = (4.10)

where I is the identity matrix. Only square matrices have an inverse.
There are several applications of these concepts but a full review is beyond

the scope of this section. However, for those with experience with linear and
matrix algebra, we provide an example exercise at the end of the chapter. The
remainder of the chapter reviews the matrix syntax of MATLAB and Python.

4.3 MATRIX OPERATIONS IN MATLAB®

In Chapter 2, we introduced several methods for creating a row vector.
The simplest of those is to type the vector values between square brackets,
separated by spaces, for example, []1 2 3 . You can create column vectors by
separating the elements by semicolons; for example, []; ;1 2 3 will generate
the column vector

1

2

3

















To create a matrix, you can combine this syntax. [];1 2 3 4 5 6 will generate
the matrix

1 2 3

4 5 6











(from Equation 4.1).
In Equation 4.3, we introduced the concept of matrix addition. If the

variables A and B contain the matrices described in Equations 4.1 and 4.2,
then to add the matrices A and B together, you can simply type

 A B+

Matrix subtraction is similar; Equation 4.4 shows subtracting matrix A
from matrix B. The syntax is

 B A−

Array Mathematics in MATLAB® and Python    ◾    59

Matrix multiplication is also straightforward. If A and B are the matri-
ces in Equations 4.7 and 4.8, you can multiply them to get the matrix in
Equation 4.9 using the following syntax:

 C A B= ∗

To transpose a matrix—it must be square—you can use the transpose
operator.

 C′

4.4 MATRIX OPERATIONS IN PYTHON
If you will recall the instructions in Chapter 2 on creating arrays in Python,
that we first need to import the NumPy library using import numpy as np,
we can create row vectors with np.array([1,2,3]) (which will create the
vector []1 2 3). To create a column vector

1

2

3

















use the syntax np.array([[1], [2], [3]]). To create a matrix, such as the one
in Equation 4.1, you can combine the syntax and use np.array([[1,2,3],
[4,5,6]]) to create

1 2 3

4 5 6











In Equation 4.3, we introduced the concept of matrix addition. If the vari-
ables A and B contain the matrices described in Equations 4.1 and 4.2,
then to add the matrices A and B together, you can simply type

 A B+

Matrix subtraction is similar; Equation 4.4 shows subtracting matrix A
from matrix B. The syntax is

 B A−

60 ◾ Modeling and Simulation with MATLAB® and Python

Matrix multiplication is also straightforward. If A and B are the matrices
in Equations 4.7 and 4.8, you can multiply them to get the matrix in
Equation 4.9 using the following syntax:

 C np.dot(A B)= ,

To transpose a matrix—it must be square—you can use the transpose
function.

 np.transpose(C)

EXERCISES
Given matrices

A =











1 2 3

4 5 6
,

B =











1 2

3 4
,

C =

















1 2

3 4

5 6

, and D =










7 8 9

10 11 12
,

calculate the following:

 1. A C− ′

 2. ′+C D3

 3. BA

 4. CB

 5. B4

 6. AA′

 7. ′D D

 8. For those with a background in linear algebra, download the file
simultaneous.pdf from the book website and follow the instructions
for MATLAB or Python solution of simultaneous linear equations.

61

C h a p t e r 5

Plotting

5.1 PLOTTING IN MATLAB®

MATLAB® supports some sophisticated plotting tools, including 3D
plotting and polar coordinates. In this chapter, we are going to focus on
2D plotting as a means to help visualize your models. Figure 5.1 shows an
example plot generated in MATLAB to compare experimental results to
the theoretical results for light intensity as a function of distance.

The basic 2D plot command is

plot(x, y)

where x and y are any vector names.
Both vectors must have the same number of elements. The plot command

creates a single curve with the x values on the abscissa (horizontal axis) and
the y values on the ordinate (vertical axis). The curve is made from segments
of lines that connect the points that are defined by the x and y coordinates
of the elements in the two vectors. The more elements there are to plot, the
smoother the plot should look.

Given data in two vectors x and y, we can generate the plot in Figure 5.2
with the following code:

x=[1 2 3 5 7 7.5 8 10];
y=[2 6.5 7 7 5.5 4 6 8];
plot(x, y)

62 ◾ Modeling and Simulation with MATLAB® and Python

As soon as the plot command is executed, a new window will appear
containing the plot. Since we have not given MATLAB any instructions
about how to format the plot, it makes decisions about the axes, step
sizes, line color, and so on. You can control all of these things.

80

200

400

600

In
te

ns
ity

 (l
ux

) 800

1000

1200

10 12 14 16
Distance (cm)

Light intensity as a function of distance

�eory
Experiment

18 20 22 24

FIGURE 5.1 Example of a 2D plot in MATLAB.

1
2

3

4

5

6

7

8

2 3 4 5 6 7 8 9 10

FIGURE 5.2 Basic data plot.

Plotting    ◾    63

Line specifiers—an optional parameter to the plot function—can be used
to control the color of the line, the style of the line, and any data markers. The
specifiers are entered as a coded string, but the specifiers can be in any order,
and all of them are optional (i.e., 0, 1, 2, or all 3 can be included in a command).

Line Style Specifier Line Color Specifier Marker Type Specifier

Solid - Red r X-mark x
Dotted : Green g Circle o
Dashed -- Blue b Asterisk *
Dash-dot -. Black k Point .

For additional line markers and colors, please refer to MATLAB’s built-in
help by typing help plot in the Command Window, or using the search
documentation box in the ribbon.

Let us plot the data in the following table to explore line specifiers.

Year 1988 1989 1990 1991 1992 1993 1994

Sales ($M) 127 130 136 145 158 178 211

To generate Figure 5.3, use the following code:

We can also plot functions by using MATLAB to calculate the value of an
equation for a specified set of input points. Consider Equation 5.1:

 y cos(x)x= −3 5 60 5. . (5.1)

We can plot this equation over a range of −2 to 4 inclusive by first generat-
ing a vector with the endpoints and spacing we want, and then evaluating
the equation for each point in the vector.

The results can be seen in Figure 5.4.

year=[1988:1:1994];
sales=[127 130 136 145 158 178 211];
plot(year, sales, '--r*')

x=[-2: 0.01: 4];
y=3.5 .^ (-0.5*x) .* cos(6*x);
plot(x, y)

64 ◾ Modeling and Simulation with MATLAB® and Python

1988
120

130

140

150

160

170

180

190

200

210

220

1989 1990 1991 1992 1993 1994

FIGURE 5.3 Line specifier example.

43210−2
−3

−2

−1

0

1

2

3

−1

FIGURE 5.4 Plotting a function.

Plotting    ◾    65

Plotting functions this way can be very sensitive to the number of points
in the “x” vector. For example, if we change the distance between points
on the range of −2 to 4 from 0.01 to 0.3, the plot looks like Figure 5.5.
You should take care to ensure the plot you get accurately represents the
function you wish to represent.

If you recall Figure 5.1, you should have noticed that we can put
multiple graphs on the same plot. The first mechanism for doing so is
providing multiple sets of data points to a single plot command. For
example, to plot y versus x, v versus u, and h versus t on the same plot,
you can issue this plot command:

plot(x, y, u, v, t, h)

By default, MATLAB will create each curve with a different color. You
may also control the lines by providing line specifiers to each pair. For
example:

plot(x, y,'-b', u, v,'—r', t, h,'g:')

−2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

FIGURE 5.5 Low sampling resolution.

66 ◾ Modeling and Simulation with MATLAB® and Python

To demonstrate this, let us plot a function, its first and second derivatives
(as seen in Equations 5.2, 5.3, and 5.4), from −2 to 4 inclusive:

 y x x= − +3 26 103 (5.2)

 y x= −9 262 (5.3)

 y x=18 (5.4)

The code to generate the plot in Figure 5.6 is as follows:

An alternative method for drawing multiple curves on a single plot is the
hold command. You can issue a hold on to instruct MATLAB to keep the
current plot and all axis properties, and to draw all subsequent plot com-
mands in the existing plot window. Issuing a hold off command will return

x=[-2:0.01:4];
y=3*x.^3 - 26*x+6;
yd=9*x.^2 - 26;
ydd=18*x;
plot(x, y,'-b', x, yd,'--r', x, ydd,':k')

−2 −1 0 1 2 3 4
−40

−20

0

20

40

60

80

100

120

FIGURE 5.6 Multiple curves in a single plot.

Plotting    ◾    67

MATLAB to the default mode where plot commands erase the previous
plots and reset all axis properties before drawing new plots.

Let us use this technique to start constructing a publication-ready plot
as demonstrated in Figure 5.1.

This code generates Figure 5.7. A good start but a truly readable plot
requires us to add axis labels, a title, legend, and potentially manipulate
the axis limits. Let us learn how to do that now.

Once you have a plot, MATLAB provides multiple mechanisms for
manipulating various plot properties. We are going to focus on using script-
able commands (typed in the Command Window) as knowing those allows

x=[10:0.1:22];
y=95000./x.^2;
x_data=[10:2:22];
y_data=[950 640 460 340 250 180 140];
plot(x, y,'-')
hold on
plot(x_data, y_data,'ro--')
hold off

10
100

200

300

400

500

600

700

800

900

1000

12 14 16 18 20 22

FIGURE 5.7 Data plot generated with hold command.

68 ◾ Modeling and Simulation with MATLAB® and Python

you to write programs that can generate complete plots; however, you can do
everything we mention interactively via the menus in the GUI if you prefer.

To set a title, use the title function. It takes a single string as an argument.
xlabel and ylabel functions also take a single string as an argument, and set
the labels on the x and y axes, respectively. The axis function allows you to
set the minimum and maximum limits of the x-axis and y-axis by providing
a four element vector of the format xmin xmax ymin ymax[]. To
add a legend, you use the legend function, providing a string argument
with the name of each curve, in the order the curves were added to the plot.
Executing the following code will turn Figure 5.7 into Figure 5.1:

5.2 PLOTTING IN PYTHON
There is a Python library available called matplotlib that provides 2D-plotting
tools and functions very similar to what MATLAB provides. It is included
in the Anaconda installation we recommend, and it can be loaded into
Python using the import command. We will be importing the library as plt
to be consistent with the available documentation for matplotlib (which we
recommend you to use as a reference, as the capabilities are extensive and
are well beyond the basic introduction to plotting we provide).

import matplotlib.pyplot as plt

We also recommend changing your IPython preferences to instruct it to not
use inline graphics. Our instructions are written assuming that you have set
the IPython graphics backend setting to Automatic, as shown in Figure 5.8.

Figure 5.9 shows an example plot generated in Python to compare
experimental results to the theoretical results for light intensity as a func-
tion of distance.

The basic 2D plot command is

plt.plot(x, y)

where x and y are any vector names.

xlabel('DISTANCE (cm)')
ylabel('INTENSITY (lux)')
title('Light Intensity as a Function of Distance')
axis([8 24 0 1200])
legend('Theory','Experiment')

Plotting    ◾    69

Both vectors must have the same number of elements. The plot com-
mand creates a single curve with the x values on the abscissa (horizontal
axis) and the y values on the ordinate (vertical axis). The curve is made
from segments of lines that connect the points that are defined by the

FIGURE 5.8 IPython graphics backend setting.

8
0

200

400

600

800

1000

1200

10 12 14 16
Distance (cm)

Light intensity as a function of distance

�eory
Experiment

In
te

ns
ity

 (l
ux

)

18 20 22 24

FIGURE 5.9 Example of a 2D plot in Python.

70 ◾ Modeling and Simulation with MATLAB® and Python

x and y coordinates of the elements in the two vectors. The more elements
there are to plot, the smoother the plot should look.

Given data in two vectors x and y, we can generate the plot in Figure 5.10
with the following code:

As soon as the plot command is executed, a new window will appear con-
taining the plot. Since we have not given Python any instructions about
how to format the plot, it makes decisions about the axes, step sizes, line
color, and so on. You can control all of these things.

Line specifiers—an optional parameter to the plot function—can be
used to control the color of the line, the style of the line, and any data
markers. The specifiers are entered as a coded string, but the specifiers can
be in any order, and all of them are optional (i.e., 0, 1, 2, or all 3 can be
included in a command).

x=np.array([1,2,3,5,7,7.5,8,10])
y=np.array([2,6.5,7,7,5.5,4,6,8])
plt.plot(x, y)

1 2
2

3

4

5

6

7

8

3 4 5 6 7 8 9 10

FIGURE 5.10 Simple plot.

Plotting    ◾    71

Line Style Specifier Line Color Specifier Marker Type Specifier

Solid - Red r X-mark x
Dotted : Green g Circle o
Dashed -- Blue b Asterisk *
Dash-dot -. Black k Point .

For additional line markers and colors, please refer to the online docu-
mentation for matplotlib.

Let us plot the data in the following table to explore line specifiers:

Year 1988 1989 1990 1991 1992 1993 1994

Sales ($M) 127 130 136 145 158 178 211

To generate Figure 5.11, use the following code:

year=np.arange(1988,1994.1,1)
sales=np.array([127,130,136,145,158,178,211])
plot(year, sales, '--r*')

0
120

140

160

180

200

220

1 2 3 4 5
+1.988e3

6

FIGURE 5.11 Line specifier example.

72 ◾ Modeling and Simulation with MATLAB® and Python

We can also plot functions by using Python to calculate the value of an
equation for a specified set of input points. Consider Equation 5.5:

 y cos(x)x= −3 5 60 5. . (5.5)

We can plot this equation over a range of −2 to 4 inclusive by first generat-
ing a vector with the endpoints and spacing we want, and then evaluating
the equation for each point in the vector.

The results can be seen in Figure 5.12.
Plotting functions this way can be very sensitive to the number of points

in the “x” vector. For example, if we change the distance between points
on the range of −2 to 4 from 0.01 to 0.3, the plot looks like Figure 5.13.
You should take care to ensure the plot you get accurately represents the
function you wish to represent.

x=np.arange(-2,4.001,.01)
y=3.5**(-0.5*x)*np.cos(6*x)
plt.plot(x, y)

−2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

FIGURE 5.12 Plotting a function.

Plotting    ◾    73

If you recall Figure 5.9, you should have noticed that we can put mul-
tiple graphs on the same plot. The first mechanism for doing so is provid-
ing multiple sets of data points to a single plot command. For example, to
plot y versus x, v versus u, and h versus t on the same plot, you can issue
this plot command:

plt.plot(x, y, u, v, t, h)

By default, matplotlib will create each curve with a different color. You may
also control the lines by providing line specifiers to each pair. For example:

plot(x, y,'-b', u, v,'—r', t, h,'g:')

To demonstrate this, let us plot a function, its first and second derivatives
(as seen in Equations 5.6 through 5.8), from −2 to 4 inclusive:

 y x x= − +3 26 103 (5.6)

 y x= −9 262 (5.7)

 y x=18 (5.8)

−2
−3

−2

−1

0

1

2

3

−1 0 1 2 3 4 5

FIGURE 5.13 Low sampling resolution.

74 ◾ Modeling and Simulation with MATLAB® and Python

The code to generate the plot in Figure 5.14 is as follows:

In matplotlib, additional plot commands will be automatically added
to the existing plot figure. You can work on multiple figures by
 calling the figure function. For example, to open a second figure for
 subsequent plot function calls to draw in, you can type “figure(2)”.
You can switch between plot windows for future commands by pass-
ing the figure function the number of the figure window you wish to
make active.

x=np.arange(-2,4.001,.01)
y=3*x**3 - 26*x+6
yd=9*x**2 - 26
ydd=18*x
plt.plot(x, y,'-b', x, yd,'--r', x, ydd,':k')

−2
−40

−20

0

20

40

60

80

100

120

−1 0 1 2 3 4 5

FIGURE 5.14 Multiple curves in a single plot.

Plotting    ◾    75

Let us start constructing a publication-ready plot as demonstrated in
Figure 5.9. We are going to add a label to our plot commands now, which
will be used to generate a legend later.

This code generates Figure 5.15. A good start but a truly readable plot
requires us to add axis labels, a title, legend, and potentially manipulate
the axis limits. Let us learn how to do that now.

To set a title, use the title function. It takes a single string as an argument.
xlabel and ylabel functions also take a single string as an argument, and set
the labels on the x and y axes, respectively. The axis function allows you
to set the minimum and maximum limits of the x-axis and y-axis by pro-
viding a four-element vector of the format xmin xmax ymin ymax[].

x=np.arange(10,22.01,0.1)
y=95000/x**2;
x_data=np.arange(10,22.01,2)
y_data=np.array([950,640,460,340,250,180,140])
plt.plot(x, y,'-', label='Theory')
plt.plot(x_data, y_data,'ro--', label='Experiment')

10
100

200

300

400

500

600

700

800

900

1000

12 14 16 18 20 22

FIGURE 5.15 Data plot from multiple plot commands.

76 ◾ Modeling and Simulation with MATLAB® and Python

To add a legend, you use the legend function, which will use the labels you
provided when generating the plot(s) earlier. Executing the following code
will turn Figure 5.15 into Figure 5.9:

EXERCISES
 1. Make two separate plots of the function

 f (x) x x x= − + −. . .0 01 0 45 0 5 24 2

 one for –4 4≤ ≤ x and one for –8 8≤ ≤ x .

 2. Plot the function

f (x)

x x

x
= − −

−

2 4 5

2

 for − ≤ ≤4 8x . Notice that the function has a vertical asymptote at
x = 2. Plot the function by creating two vectors for the domain of x,
the first vector with elements from −4 to 1.7, and the second vector
with elements from 2.3 to 8. For each x vector, create a y vector with
the corresponding values of y according to the function. To plot the
function, make two curves in the same plot.

 3. You have an electrical circuit that includes a voltage source vs with an
internal resistance rs and a load resistance RL. The power P dissipated
in the load is given by

P

v R

R +r
s L

L s

=
2

2()

 Plot the power P as a function of RL for 1 10Ω Ω≤ ≤RL given that vs =
12V and rs = 2.5Ω.

 4. The Gateway Arch in St. Louis is shaped according to the following
equation:

plt.xlabel('DISTANCE (cm)')
plt.ylabel('INTENSITY (lux)')
plt.title('Light Intensity as a Function of Distance')
plt.axis([8,24,0,1200])
plt.legend()

Plotting    ◾    77

 y
x= − 






693 8 68 8

99 7
. . cosh

.

 Make a plot of the arch. Draw a horizontal line at ground level (y = 0),
x acosh ()= ± 99 7 693 8 68 8. . / . .

 5. In astronomy, the relationship between the relative temperature
T/TSUN (temperature relative to the sun), relative luminosity L/LSUN,
and relative radius R/RSUN a star is modeled by

L

L

R

R

T

TSUN SUN SUN

= 
















2 4

 The Hertzsprung–Russell (HR) diagram is a plot of L/LSUN versus the
temperature. The following data are given:

Sun Spica Regulus Alioth
Barnard’s

Star
Epsilon

Indi
Beta

Crucis

Temperature (K) 5840 22,400 13,260 9,400 3,130 4,280 28,200
L/LSUN 13,400 150 108 0 0.15 43,000
R/R SUN 7.8 3.5 3.7 0.18 0.76 8

 To compare the data with the model, plot a HR diagram. The dia-
gram should have two sets of points. One uses the values of L/LSUN
from the table (use asterisk markers), and the other uses values of
L/LSUN that are calculated by the equation using R/RSUN from the
table (use circle markers). In the HR diagram both axes are logarith-
mic. In addition, the values of the temperature on the horizontal axis
are decreasing from left to right. Label the axes and use a legend.

 6. The position x as a function of time that a particle moves along a
straight line is given by

 x(t) t t t= − + + −0 1 0 8 10 704 3. .

 The velocity v(t) is determined by the derivative of x(t) with respect
to t, and the acceleration a(t) is determined by the derivative of v(t)
with respect to t.

 Derive the expressions for the velocity and acceleration of the par-
ticle, and make plots for the position, velocity, and acceleration as
a function of time for 0 8≤ ≤ t . Time t is measured in seconds, and

78 ◾ Modeling and Simulation with MATLAB® and Python

position x is measured in meters. Make three plots, one for position,
one for velocity, and one for acceleration. Label the axes appropri-
ately with correct units.

 7. A resistor, R = 2Ω, and an inductor, L = 1.7H, are connected to a
voltage source in series (RL circuit). When the voltage source applies
a rectangular voltage pulse with an amplitude of V = 24V and a
duration of 0.5 s, the current i(t) in the circuit as a function of time
is given as follows:

i(t)
V

R
e for t

i(t) e
V

R
e

Rt

L

Rt

L

= 





 −








 ≤ ≤

= 







−

1 0 0 5
−

. s

00 5

0 5
.

. s
R

L for t








 ≤

 Make a plot of the current as a function of time for 0 5≤ ≤ t s.

79

C h a p t e r 6

Problem Solving

Problem solving includes experience, knowledge, process, and art.
In this chapter, we want to focus on computer-assisted problem solv-

ing; or programming. Computers are good tools for solving rule-based
problems. Most problems have more than one solution. Thus the pro-
grammer must tie in his or her prior experience, knowledge, and under-
standing of the problem to produce a solution that most efficiently solves
the problem. Problem solving is an art, in that the problem solver comes
up with his or her own unique solution to the problem.

6.1 OVERVIEW
Problem solving requires a combination of science and art. On the technical
side, we have math, chemistry, physics, mechanics, and so on, whereas on
the artistic side, we have things such as judgment, prior experience, common
sense, know-how, and so on.

We will use what we will call the engineering method to approach solving
problems. The steps, broadly, consist of the following:

• Recognize and understand the problem

• Gather data (and verify its accuracy)

• Select guiding theories and principles

• Make valid, safe assumptions when necessary

• Solve the problem

80 ◾ Modeling and Simulation with MATLAB® and Python

• Verify the results

• Present the solution

If time permits and the results are not what you expected, you may wish to
go back a few steps to improve the solution. What are the steps in detail?

Identify the problem: You should be able to create a clear written state-
ment of the problem to be solved. If you cannot do this, you will
struggle to come up with a good solution.

Determine what is required for the solution: What is known? What is
unknown? Are there any restrictions or limitations? Are there any
special cases?

Develop a step-by-step plan (algorithm): How are we going to solve the
problem? What steps does our program need to take?

Outline the solution in a logic diagram: It is usually helpful to outline
the solution to a programming problem in a logic diagram. This step
will likely create something that could be translated into a high-level
version of the program used to solve the problem.

Execute the plan: Write the code. Keep track of what works, and what
does not (source control, such as git, is often helpful but outside the
scope of this book). It can be helpful to write and test small portions
of the solution independently to make sure that those parts work as
expected. This will allow you to build on smaller successes and to eat
the elephant one bite at a time.

Analyze the solution: Revise the plan and reexecute as needed. Keep the
good parts of the plan, and discard the not so good parts. We talk in
greater detail about verifying and validating models in Chapter 12.

Report/document the results: Let your team know how your idea worked
in writing. Good documentation and records of your development
and analysis will be helpful at this stage.

6.2 BOTTLE FILLING EXAMPLE
A specific example will be useful for making this more concrete. The
problem is simple: fill a bottle with stones. We need to document
any assumptions that may be required, and then write a step-by-step

Problem Solving    ◾    81

procedure for solving the problem. Remember when doing these
things, you need to think like a machine. We want to avoid assump-
tions and steps in our procedure that are too broad and vague.

First, what assumptions do we need to make? This is one possible list,
but there could be other assumptions as well.

• Bottle is present

• Stones are present

• There are enough stones to fill the bottle

• Bottle is empty (or at least not full)

• Some (or all) stones fit through the opening

What might an algorithm look like? Remember, this is partially an art, and
our algorithm here is not the only possible solution. There is not necessarily
a right answer, only answers that work, and ones that do not.

 1. Set bottle upright near stones.

 2. Pick up a stone and try to put it in the bottle.

 3. If the stone is too large to fit, discard the stone, and go to step #2.

 4. Otherwise, the stone fits, so put it in the bottle.

 5. Check to see if the bottle is full. If not, then go to step #2.

 6. The bottle is full, so stop.

Now we have an algorithm for solving the bottle filling problem. We will
return to this example later in the chapter.

6.3 TOOLS FOR PROGRAM DEVELOPMENT
A variety of tools and techniques can be used in the process of program
development and are useful for organizing the tasks in problem solving.
Many of these are focused on the development or formulation of algo-
rithms, the representation of algorithms, and the refinement or structuring
of algorithms. There are three techniques that we will discuss: top–down
design, pseudocode, and logic diagrams or flowcharts. You will not
necessarily use any single technique, but likely a blend of the techniques

82 ◾ Modeling and Simulation with MATLAB® and Python

depending on the problems you are attempting to solve and your comfort
with the techniques.

6.3.1 Pseudocode

Pseudocode is an artificial and informal programming language that helps
programmers to develop algorithms. Unlike MATLAB® or Python, there
is no standard grammar or syntax, and no interpreter to execute code. It
is simply writing steps in an algorithm in a code-like manner, rather than
using something like full English sentences. We will use examples later in
this chapter.

6.3.2 Top–Down Design

With top–down design, you will begin with a single statement that conveys the
overall function of the program. It is a complete (but simple) representation
of the program. Then, you divide that top statement into a series of smaller
tasks and list them in the order in which they must be performed. Next, you
will refine each of these smaller tasks into yet smaller steps, defining specific
internal and external data required. Continue this refinement process until all
tasks are broken into small tasks that can be simply programmed as computer
code. At this point, the algorithm is complete. When combining this technique
with pseudocode, writing the actual program is normally straightforward.

Let us examine an example. First, the problem:

Twenty students in a class have taken their first quiz. The grades
(in the range of 0 to 100) are available. Determine the class average
on the quiz.

What items are known? The grades, the possible range of legitimate grades,
and that the user of the program does not know MATLAB or Python are all
pieces of information we know. What is unknown? How the grades are
accessed by the program? So, we will list an assumption that the grades will
be input one by one, with a flag value (−99) to indicate when done.

The first step is to write the top-level statement of the program using
pseudocode.

1.0 Determine the class average for the quiz

While this statement accurately captures the program’s purpose, it does
not provide much insight into how to write the code. So the next step is to
refine this statement into more detailed statements.

Problem Solving    ◾    83

1.0 Determine the class average for the quiz

1.1 Initialize variables

1.2 Input and sum the quiz grades

1.3 Calculate and print the class average

Progress! Now, we need to further refine these (and use pseudocode to
describe these steps, where we can).

1.0 Determine the class average for the quiz

1.1 Initialize variables

1.1.1 Initialize a running total to zero

1.1.2 Initialize grade count to zero

1.2 Input and sum the quiz grades

1.2.1 Request and get the first grade

1.2.2 Add this grade to the running total

1.2.3 Add one to grade count

1.2.4 Input next grade

1.2.5 Add this grade into the running total

1.2.6 Add one to grade count

1.2.7 If grade input is −99, go to task 1.3, otherwise repeat steps
from 1.2.4

1.3 Calculate and print the class average

1.3.1 Set the class average to the running total divided by the
grade count

1.3.2 Print the average

6.3.3 Flowcharts

Flowcharts—diagrams that describe the logic flow of the program—are
very powerful tools in program development. They are not a complete
description of the program, and not the only tool to use, but can be very

84 ◾ Modeling and Simulation with MATLAB® and Python

helpful for envisioning the various paths through the program required to
solve a problem. There are no formal standards for flowcharts, but there
are some common guidelines we will lay out.

There are a number of standard shapes used in flowcharts, and stick-
ing to this convention will make it easier for others to understand your
flowcharts. For example, the beginning and ending of a program are
normally shown within a rectangle with rounded corners, containing
text such as start, begin, and end, or in the case of a subprogram, enter
for example. Arrows are used to designate the flow of the program, and
normally the arrow will point to the next sequential program block in
the flowchart. Any time a decision has to be made by the program, a
selection structure is used. This is a diamond shape, with one entrance
and two exits (labeled with the choice—yes or no, true or false, etc.)
and containing a question (such as Quit? or A < B?). General process-
ing blocks are commonly represented by a rectangle. These commands
could be completing some mathematical equation for example. See
Figure 6.1 for examples.

6.4 BOTTLE FILLING EXAMPLE CONTINUED
We now know enough to generate a full flowchart for the bottle filling
example in Section 6.2. Figure 6.2 contains a flowchart for one possible
solution to the bottle filling problem. If you compare the flowchart to the

Start

End A>B?
F

T

Quit?
Y

N
Process

FIGURE 6.1 Flowchart symbols.

Problem Solving    ◾    85

top–down example created in Section 6.2, you will note that the algorithms
are different.

EXERCISES
 1. Using the top–down method, please describe an algorithm for a pro-

gram to solve the real roots of a quadratic equation ax bx c2 + + = 0.
Your algorithm should ask the user for the coefficients. To calculate
the roots of the equation, your algorithm should calculate the
discriminant D given by

 D b ac= −2 4

 If D > 0, the algorithm displays a message: The equation has two
roots and then displays the roots.

 If D = 0, the algorithm displays a message: The equation has one root,
and then displays the root.

 If D < 0, the algorithm displays a message: The equation has no real
roots.

 Create a flowchart for your algorithm.

 2. Using the top–down method, please describe an algorithm for a pro-
gram that calculates the cost of a car rental according to the following
price schedule:

Start

Any
stones left?

Yes

No

Get stone
Does

stone fit?

No No

Yes Yes

Discard
stone

Put stone
in bottle

Is bottle
full? End

FIGURE 6.2 Bottle filling example flowchart.

86 ◾ Modeling and Simulation with MATLAB® and Python

Type of Car

Rental Period

1–6 days 7–27 days 28–60 days

Class B $27 per day $162 for 7 days,
+$25 for each
additional day

$662 for 28 days,
+$23 for each
additional day

Class C $34 per day $204 for 7 days,
+$31 for each
additional day

$810 for 28 days,
+$28 for each
additional day

Class D Class D cannot
be rented for
less than 7 days

$276 for 7 days,
+$43 for each
additional day

$1136 for 28 days,
+$38 for each
additional day

 The algorithm asks the user to enter the rental period and type of
car. The algorithm should display the appropriate cost. If a period
longer than 60 days is entered, a message “Rental is not available
for more than 60 days” should be displayed. If a rental period of less
than 6 days is entered for Class D, a message “Class D cars cannot be
rented for less than 6 days” should be displayed. Create a flowchart
for your algorithm.

87

C h a p t e r 7

Conditional Statements

In code we have written and executed so far, all of the commands
have been executed in sequential order. More powerful programs and

models will require the ability for the code to make decisions about which
parts of the code should be executed, and about some of the mechanisms
to control, which are presented in this chapter. Specifically, we are going
to teach you how to select one of several possible program paths—distinct
blocks of code to execute—based on a condition; an evaluation of a vari-
able against some test state.

7.1 RELATIONAL OPERATORS
In order to compare a variable against a static condition (or against
another variable), we need to introduce relational (or comparison) opera-
tors. Relational operators compare the operands (the values before and
after the operator) and based on the operator, evaluate the comparison
and tell us if the condition is true or false. Assume variable a holds 5 and
variable b holds 10, then

88 ◾ Modeling and Simulation with MATLAB® and Python

Operator Description Example

< If the value of the left operand is less
than the value of the right operand,
then the condition becomes true.

(a < b) is true.

<= If the value of the left operand is less
than or equal to the value of the right
operand, then the condition becomes
true.

(a <= b) is true.

> If the value of the left operand is greater
than the value of the right operand,
then the condition becomes true.

(a > b) is not true.

>= If the value of the left operand is greater
than or equal to the value of the right
operand, then the condition becomes
true.

(a >= b) is not true.

== If the values of two operands are equal,
then the condition becomes true.

(a == b) is not true.

~=
!=

MATLAB
Python

If the values of two operands are not
equal, then the condition becomes true.

(a != b) and (a ~= b)
are true.

Note: In MATLAB answers to these comparisons are returned as scalar values, 1 represent-
ing true and 0 representing not true.

7.2 LOGICAL OPERATORS
We can also do logical tests, comparing two operands to make decisions
based on if those operands are true or not true. Combined with compar-
ison operators, we can build fairly complicated conditional tests. If a is
true, and if b is true, then

Python Operator MATLAB Operator Description Example

and & If both the operands are
true, then the condition
becomes true.

(a and b) is
true

or | If any of the two operands
are true, then the
condition becomes true.

(a or b) is
true

not ~ Used to reverse the logical
state of its operand.

not (a and b)
is false

Note: In MATLAB, the operands are numeric, as is the output of the logical test. For exam-
ple, any nonzero number is evaluated as true, and the result of a logical test that is
true is the value 1. Not true logical tests return 0.

Conditional Statements    ◾    89

7.3 CONDITIONAL STATEMENTS
Conditional statements allow our programs to make decisions, and it
is not too dissimilar to the way we (humans) make decisions. The way
it works is that a condition is stated; if that condition is met, one set of
actions is taken. If the condition is not met, either nothing is done, or a
second set of actions is taken. For example,

 If I win the lottery,

 I will quit college, buy a new car, and go fishing.

 If I do not win the lottery,

 I will study harder so that I can get a better job.

7.3.1 MATLAB®

There are three forms of if statements that can be formed in MATLAB®.
The most basic is if-end. In this form, a command group will be executed
if the conditional statement is true, and not executed if the conditional
statement is not true. Normal sequential code execution resumes after the
end keyword.

The second form is the if-else-end format. In this version, command group 1
is executed if the conditional statement is true, whereas command group 2 is
executed if the conditional statement is not true.

The final form is if-elseif-else-end. Here, we can chain multiple if state-
ments together that are only evaluated if (all) previous if statements

if conditional statement
 command group
end

if conditional statement
 command group 1
else
 command group 2
end

90 ◾ Modeling and Simulation with MATLAB® and Python

evaluated as not true. You can have any number of elseif statements, and
the final else statement and command group is entirely optional. As soon
as any command group is executed, the program will jump ahead to the
end keyword.

This final form can be complicated, so a flowchart demonstrating how a if-
elseif-else-end block with three possible command groups works is shown
in Figure 7.1.

Let us use a more concrete example. Assume we wanted a program that
would calculate a tip based on the size of the bill such that the minimum
tip was $1.80, the program would tip 18% if the bill was less than $60, and
it would tip 20% if the bill was greater than or equal to $60. If we convert
that to a flowchart, we can see how it would look in Figure 7.2.

if conditional statement 1
 command group 1
elseif conditional statement 2
 command group 2
...
elseif conditional statement #
 command group #
...
else
 command group n+1
end

False

False

True

True

ElseIf
conditional

If
conditional

command
group 1

command
group 2

command
group 3

End

FIGURE 7.1 If-elseif-else-end flowchart.

Conditional Statements    ◾    91

Here is the MATLAB code to implement that flowchart. Please note
we are changing the display number format to bank to ensure the vari-
ables containing money display output at the right number of decimal
points.

Remember the end keyword is required for every if command. There is
no limit to the number of if commands used in a program, and there are
many different ways to combine the if-end, if-else-end, and if-elseif-else-
end formats to perform the same task. Else conditions are optional, always,
and do not have conditional statements attached to them.

MATLAB also supports switch-case structures, which are similar to if-
elseif-else-end statements. In a switch-case structure, we take a single scalar

format bank
 bill=input('Enter the amount of the bill (in dollars): ');
if (bill <= 10)
 tip = 1.8;
elseif (bill > 10) & (bill <= 60)
 tip = bill*0.18;
else
 tip = bill*0.2;
end
disp('The tip is (in dollars):')
disp(tip)

False

Else

End

False
True

True

If
bill < $10

tip = $1.80

tip =
bill * 0.18

tip =
bill * 0.20

ElseIf
$10 < bill < $60

FIGURE 7.2 Tipping flowchart (MATLAB Syntax).

92 ◾ Modeling and Simulation with MATLAB® and Python

or string, and compare that to a number of different cases to pick a match.
For example (we will explain the while statement in a future chapter), this
code will display the value in x if that value is 100, 200, 300, or 400, and
ask for the user’s input again, and it will exit on any other value of x.

7.3.2 Python

Python provides three forms of if conditional statements. The most basic
is if. In this form, a command group will be executed if the conditional
statement is true and not executed if the conditional statement is not true.
Normal sequential code execution resumes after the indentation returns
to the level of the if statement. (Python uses indentation to designate code
blocks, and is thus very sensitive to white space.)

The second form is the if-else format. In this version, command group 1 is
executed if the conditional statement is true, whereas command group 2
is executed if the conditional statement is not true.

n = 1;
while (n ~= 0)
 x = input ('Resistance: ');
 switch x
 case 100
 disp (x)
 case 200
 disp (x)
 case 300
 disp (x)
 case 400
 disp (x)
 otherwise
 n = 0;
 end
end

if conditional statement:
 command group

if conditional statement:
 command group 1
else:
 command group 2

Conditional Statements    ◾    93

The final form is if-elif-else. Here, we can chain multiple if statements
together that are only evaluated if (all) previous if statements evaluated as
not true. You can have any number of elif statements, and the final else
statement and command group is entirely optional. As soon as any com-
mand group is executed, the program will jump ahead past the rest of the
command groups.

This final form can be complicated, so a flowchart demonstrating how a
if-elif-else block with three possible command groups works is shown in
Figure 7.3.

Let us use a more concrete example. Assume we wanted a program that
would calculate a tip based on the size of the bill such that the minimum

if conditional statement 1:
 command group 1
elif conditional statement 2:
 command group 2
. . .
elif conditional statement #:
 command group #
. . .
else:
 command group n+1

False

False
If

conditional

Elif
conditional

True

Truecommand
group 1

command
group 2

command
group 3

FIGURE 7.3 If-elif-else flowchart.

94 ◾ Modeling and Simulation with MATLAB® and Python

tip was $1.80, the program would tip 18% if the bill was less than $60, and
it would tip 20% if the bill was greater than or equal to $60. If we convert
that to a flowchart, we can see how it would look in Figure 7.4.

Here is the Python code to implement that flowchart. Note that we
must cast the input, which will be a string, to an integer type, and that
we are applying some formatting to the output to only display two decimal
places.

There is no limit to the number of if commands used in a program, and
there are many different ways to combine the if, if-else, and if-elif-else for-
mats to perform the same task. Else conditions are optional, always, and
do not have conditional statements attached to them.

False

Else

False
True

Truetip = $1.80

tip =
bill * 0.18

tip =
bill * 0.20

If
bill < $10

Elif
$10 < bill < $60

FIGURE 7.4 Tipping flowchart (Python Syntax).

bill=int(input('Enter the amount of the bill (in dollars): '))
if (bill <= 10):
 tip=1.8
elif (bill>10)and(bill<=60):
 tip=bill*0.18
else:
 tip=bill*0.2
print('The tip is (in dollars): %0.2f'% (tip))

Conditional Statements    ◾    95

EXERCISES
 1. Expanding on Problem 1 from Chapter 6, implement your algo-

rithm. The problem description is restated as follows:

 Write a script called quadroots to solve the real roots of a quadratic
equation ax bx c2 0+ + = . Your algorithm should ask the user for the
coefficients. To calculate the roots of the equation, your algorithm
should calculate the discriminant D given by

 D b ac= −2 4

 If D > 0, the algorithm displays a message: The equation has two
roots and then displays the roots.

 If D = 0, the algorithm displays a message: The equation has one root,
and then displays the root.

 If D < 0, the algorithm displays a message: The equation has no real
roots.

 2. Expanding on Problem 2 from Chapter 6, implement your algo-
rithm. The problem description is restated as follows:

 Write a program that calculates the cost of a car rental according to
the following price schedule:

Type of Car

Rental Period

1–6 days 7–27 days 28–60 days

Class B $27 per day $162 for 7 days,
+$25 for each
additional day

$662 for 28 days,
+$23 for each
additional day

Class C $34 per day $204 for 7 days,
+$31 for each
additional day

$810 for 28 days,
+$28 for each
additional day

Class D Class D cannot be
rented for less
than 7 days

$276 for 7 days,
+$43 for each
additional day

$1136 for 28 days,
+$38 for each
additional day

 The program asks the user to enter the rental period and type of
car. The program then displays the appropriate cost. If a period
 longer than 60 days is entered, a message Rental is not available for
more than 60 days is displayed. If a rental period of less than 6 days
is entered for Class D, a message Class D cars cannot be rented for less
than 6 days is displayed.

http://taylorandfrancis.com

97

C h a p t e r 8

Iteration and Loops

Loops are a powerful way to reexecute large portions of code. We can
use loops to calculate each time step of a simulation, or to step though

the elements of an array or matrix to do element-wise calculations.

8.1 FOR LOOPS
A for loop uses a specific loop variable to iteratively run the same block
of code a specified number of times. It is typically used to iterate over the
elements in an array, either directly or by using a variable to index into the
array, depending on language syntax.

8.1.1 MATLAB® Loops

For loop syntax in MATLAB® is very straightforward. In the most basic
form, you simply specify a variable, a start point, and an end point. You
can use any valid variable name for the loop iterator; we will use j in most
of our examples.

This loop will run four times, displaying 1, 2, 3, and 4 each time respec-
tively, as j is incremented by 1 each time through the loop, starting at 1 and
exiting when greater than 4. MATLAB is very quietly creating a vector to

for j=1:4
 j
end

98 ◾ Modeling and Simulation with MATLAB® and Python

iterate over, storing each element in the array in j one at a time as we repeat
the loop. This means that we can use MATLAB’s vector syntax to precisely
control the size that we increment j by each time through the loop. We will
commonly want to use the default increment of 1, in order to index in to
arrays or matrices, but we could for example step by 0.5.

You can nest for loops, which is commonly used to iterate over a matrix.

One important note regarding using for loops to do element-wise opera-
tions on arrays or matrices: performance is very poor. If your operation
can be done without a loop, using many of the functions and operations in
MATLAB that work on arrays, your code will perform much faster.

8.1.2 Python Loops

There are several ways to implement for loops in Python. The simplest
example is to use the range function to provide a list of integers to iterate
over. You can use any valid variable name for the loop iterator; we will use
j in most of our examples. Note that indentation is critical in defining the
elements to be repeated in the loop.

This loop will run four times, displaying 0, 1, 2, and 3 each time respec-
tively. Although you can use this mechanism to do some operation on
every element in an array, Python allows you to iterate directly over a list
of items.

for j=1:0.5:4
 j
end

for j=1:4
 for k=1:4
 a(j, k)=j*k;
 end
end
a

for j in range(4):
 print(j)

Iteration and Loops    ◾    99

This example will create the array [1 2 3], and then iterate over this array,
printing the first, second, and third items in the array on each run through
the loop respectively.

8.2 WHILE LOOPS
Unlike for loops, which have a predefined (even if it is at runtime) number
of iterations, while loops iterate for as long as the test condition is true. As
soon as the test condition becomes false, the loop exits.

8.2.1 MATLAB® While Loops

The following is a simple example of a while loop in MATLAB.

When run, it will output 0, 1, 2, and 3 on each iteration through the loop
respectively. When count is equal to 4, the test condition will become
false, and the loop will exit.

8.2.2 Python While Loops

The following is a simple example of a while loop in Python.

When run, it will output 0, 1, 2, and 3 on each iteration through the loop
respectively. When count is equal to 4, the test condition will become
false, and the loop will exit.

import numpy as np
a = np.array([1,2,3])
for j in a:
print(j)

count = 0;
while (count < 4)
 count
 count = count + 1;
end

count = 0
while (count < 4):
 print(count)
 count = count + 1

100 ◾ Modeling and Simulation with MATLAB® and Python

8.3 CONTROL STATEMENTS
Both MATLAB and Python support the use of two special control state-
ments that modify the behavior of a for or while loop.

8.3.1 Continue

The continue command will skip the rest of the commands in the current
iteration of a for or while loop, and will cause the code to jump to the next
iteration of the loop. In nested loops, it only applies to the loop it is exe-
cuted in. In other words, a continue inside the inner loop will jump to the
next iteration of the inner loop, and the outer loop will not be impacted.
The syntax for both languages is identical: just the keyword continue on
its own line.

8.3.2 Break

The break command will cause execution to leave the loop entirely, and
the program will jump to immediately after the loop. Just like the continue
command, in nested loops only the loop it is executed in is impacted. The
syntax in both languages is the keyword break on its own line.

EXERCISES
 1. Write a for loop that prints all integers from 1 to n.

 2. Write a for loop that prints all integers in reverse from n to 1.

 3. Write a while loop that prints all even numbers from 1 to 100.

 4. Write a while loop that prints all integers in reverse from n to 1.

 5. Write a loop that calculates the factorial of n (n!—the product of all
positive integers less than or equal to n).

101

C h a p t e r 9

Nonlinear and
Dynamic Models

9.1 MODELING COMPLEX SYSTEMS
Although linear models are very useful in analyzing some phenomena and
especially static systems, most real systems are much more complex as well
as dynamic. For many systems, the relationship between the causes and
effects in the model will be nonlinear in form. In addition, the state of the
system will change over time and/or space reflecting dynamic changes in
the forces underlying the system.

In this chapter, we will examine the components of dynamic systems,
extending our approach to creating a conceptual model to reflect that
dynamism. We will then review several examples of the mathematical
representations of nonlinear systems. Then we will illustrate several math-
ematical approaches to modeling nonlinear dynamic systems. This chapter
then concludes with examples of dynamic systems and the computer algo-
rithms that can used to model those systems.

9.2 SYSTEMS DYNAMICS
Systems dynamics is an approach to the computer modeling of complex
systems. It has been used to model any dynamic system “characterized
by interdependence, mutual interaction, information feedback, and cir-
cular causality” (Systems Dynamics Society, 2016). Jay Forrester from
Massachusetts Institute of Technology is often credited with founding this
approach to modeling complex systems as part of his first book, Industrial
Dynamics (Forrester, 1961). In that and subsequent works, he defined

102 ◾ Modeling and Simulation with MATLAB® and Python

an approach to modeling dynamic systems that has become a standard
approach to modeling dynamic systems.

9.2.1 Components of a System

As we have already learned, a model is a simplification of a complex system
that provides a way to explore the behavior of an explicit portion of that
system. For every model we create, we implicitly or explicitly define a sys-
tem boundary. The relationships we model within the system are said to be
endogenous to our model, whereas those outside the boundary are said to
be exogenous. Exogenous parameters are often represented as a constant
or simulated through a range of values representing the range of circum-
stances that might occur, but they are not altered by any of the equations
endogenous to the model. For example, if we are modeling a regional econ-
omy, our boundary is set around an explicit geographic region. The changes
in the regional economy will be impacted by the growth or decline of the
national economy in which it resides. Those conditions will be exogenous
to our regional model and represented by one or more constants.

Within the model, the systems dynamic approach divides the system into
several interacting components. The state of the system at any time is mea-
sured by one or more levels or stocks at each instance of time. For example,
if we are modeling a physical system such as a household heating system, the
level we would keep track of over time is the room temperature. For a model
of population, we could track the total population and various subdivisions
of the population by age, sex, or other socioeconomic characteristics.

Each level interacts with one or more rates. A rate represents the amount
of change in a level for each increment of time. Spatial models represent
both the rate of change and direction of movement. In natural systems,
rates may be governed by physical laws such as the reaction rate of a
 chemical, the force of gravity acting on an object, or the rate of movement
of water through a groundwater aquifer. For business systems models, the
rates may represent the decisions made by managers about the business
investments or production such as investments in capital equipment,
creation and replacement of inventory, or projected sales.

Both the levels and the rates may be limited in their range of values.
These can be thought of as constraints imposed either because of resource
limitations or physical laws that impose those limits.

The impact of the rates on the levels over time is sometimes referred to
as a feedback. A positive feedback results in an increase in the level, whereas
a negative feedback reduces the level. A simple furnace and thermostat

Nonlinear and Dynamic Models    ◾    103

control is an example of a system with a negative feedback. If the tempera-
ture in the room drops below the level set in the thermostat, the furnace
is turned on adding heat to the room. Once the desired temperature is
reached, the furnace is turned off.

Highways are often cited as creating a positive feedback loop. When
there is congestion along an urban corridor, a highway may be built or
expanded to relieve that congestion. However, the improved accessibility
and short-term gain in traffic movement tends to attract more develop-
ment. The additional development generates more traffic, which in turn
creates additional congestion. One solution to that congestion is the addi-
tional expansion of the highway.

Putting these ideas together, we our systems model can be represented
mathematically in several ways. One way is to represent the changes in
the system as a differential equation. The general form of this equation is
shown in Equation 9.1.

dy

dx
f x= () (9.1)

Simply stated, the rate of change in the variable y(dy) with respect to the
change in x(dx) is a function of x. For dynamic models, we are predicting
the change in the level with respect to the change in time. The nature of
the function f(x) will vary depending upon the phenomenon we are mod-
eling. Later in this chapter, we will look at a variety of examples and create
programs to model those changes.

Another way of thinking about rates of change over time is by divid-
ing time into small, discrete intervals. For each time interval, the level we
calculate at time t will be the level at the previous time period (t − 1) plus
the change in the level that occurred in that interval. The change could
be positive or negative, depending on the nature of the relationship. This
difference equation can be written as follows:

 level t level t level() ()= − +1 ∆ (9.2)

where:
level(t) is the level at the current time period
level(t − 1) is the level in the previous time period
Δlevel is the change in the level during that time period

For many systems dynamics problems, this is the strategy for modeling
systems with a computer. That is why we approximate the change in level

104 ◾ Modeling and Simulation with MATLAB® and Python

that varies depending on the nature of the underlying mathematical
function that best represents that particular system. We will review a
number of those examples in Sections 9.2.2 and 9.2.3.

9.2.2 Unconstrained Growth and Decay

As the name indicates, unconstrained growth and decay represent a class
of models where there are not any constraints on the predicted levels being
modeled. Examples of systems that have been modeled in this way are
population growth, compound interest on investments, the decay of pol-
lutant concentrations in the environment, and radioactive decay. In these
models, the rate of change is proportional to the stock. For each period of
time, the amount of growth or decline is a function of the stock times the
rate of change.

We can represent the system via a difference equation as shown in
Equation 9.3:

 X t X t X t R t() () ()= − + − ∗ ∗1 1 ∆ (9.3)

where:
X represents the stock at the current time t and the previous time t − 1
R represents the rate of change
Δt is the time increment

A simple example using compound interest is represented in Table 9.1 and
Figure 9.1

As shown in Table 9.1, we invest $1000 in year 1. Assuming a 5% annual
interest rate, compounded annually, at the end of year 1, the balance is
$1050. We then apply the same rate to this new stock in year 2, and then
receive $52.50 in interest that year. We carry this forward for 20 years
reaching a total of $2526.95.

Figure 9.1 graphs the account balance over time. This type of uncon-
strained growth is called exponential growth. The exponential function
has the form:

 f x a bkx()= ∗ (9.4)

where:
a is a scale factor
b is the base
k is the growth constant

Nonlinear and Dynamic Models    ◾    105

$0.00

$500.00

$1000.00

$1500.00

$2000.00

$2500.00

$3000.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

To
ta

l a
cc

ou
nt

 b
al

an
ce

Year

FIGURE 9.1 Account balance for investment of $1000 at 5% annual interest.

TABLE 9.1 Account Balance
with 5% Annual Interest

Balance Year Interest

$1000.00 1 $50.00
$1050.00 2 $52.50
$1102.50 3 $55.13
$1157.63 4 $57.88
$1215.51 5 $60.78
$1276.28 6 $63.81
$1340.10 7 $67.00
$1407.10 8 $70.36
$1477.46 9 $73.87
$1551.33 10 $77.57
$1628.89 11 $81.44
$1710.34 12 $85.52
$1795.86 13 $89.79
$1885.65 14 $94.28
$1979.93 15 $99.00
$2078.93 16 $103.95
$2182.87 17 $109.14
$2292.02 18 $114.60
$2406.62 19 $120.33
$2526.95 20 $126.35

106 ◾ Modeling and Simulation with MATLAB® and Python

If the growth constant is positive, this is a positive exponential, which
grows as x increases. If the growth constant is negative, it is a negative
exponential, which decreases as x increases. A lot of exponential models
use the natural logarithm base e. Some exponential models take the form:

 x t x ekt()= 0 (9.5)

where:
t is time
the independent variable x is a variable that changes as a function of time
x0 is the starting value of x
k is the growth constant
e is the natural logarithm base

Exponential functions can be used as a reasonable approach to modeling
some systems for a finite period of time. Carried to extremes, exponential
growth models can produce ridiculous results. One demographer forecast-
ing the population of the earth showed that after several millennia, the
earth would be an expanding ball of flesh expanding outward at the speed
of light! Of course, that was admittedly not a forecast he believed. All sys-
tems will eventually reach limits to their growth. Populations can only
grow to the limits of their food supply or habitat constraints. Decaying
substances eventually approach zero or insignificant concentrations. For
those reasons, more realistic models add constraints to the growth.

9.2.2.1 Unconstrained Growth Exercises
 1. Let us evaluate some exponential functions either in MATLAB® or

Python. For the expression y = 4*2x, generate a set of values for y
using values of x from −4 to 10 in increments of 1. Plot a graph of the
relationship. Now try varying the constant and observe what hap-
pens to the graph. Do the same thing varying the exponential base.
Finally, change the exponent to a negative number. How does each
change impact the form and range of the graph?

 2. Write a program to calculate the interest on an account where you
initially save $100 per month over 30 years. Calculate the growth
in the account assuming that you receive 1, 3, or 5% interest com-
pounded annually. To keep the calculations fairly simple, only

Nonlinear and Dynamic Models    ◾    107

calculate the interest at the end of each year (having added $1200).
Create a graph showing the growth of your savings over time for
each of the three interest rates on the same figure. If you want to end
up with a minimum of $100,000 in savings after 30 years, how much
would you have to change the monthly savings amount to reach
that amount at each interest rate? Alter your model to calculate that
amount by substituting in different savings amounts in increments
of $25 per month. Provide the codes for the original and new solu-
tions along with a one page summary documenting your program
and the results.

 3. In 1946, Willard Libby and his colleagues were the first to recognize
the existence of a radioactive isotope of carbon. The vast majority of
carbon has the atomic weight 12, whereas radioactive carbon has the
atomic weight 14 (often represented as 14C). This isotope is formed
continually in the upper atmosphere by the interaction of neutrons
produced by cosmic rays with nitrogen atoms and then becomes
part of the carbon dioxide in the atmosphere (Bowman, 1990, p. 10).
That carbon dioxide becomes mixed with the atmosphere and is
absorbed by all living things. Once a plant or animal dies, it no
longer participates in carbon exchange resulting in the radioactive
decay of 14C. Libby (1955) is credited with describing how to ana-
lyze the 14C to determine the age of archeological and other objects.
Although there are a number of assumptions concerning the his-
torical levels of 14C in the atmosphere, its mixing and concentration
across the world, and the potential for sample contamination, the
simple model of radioactive decay of 14C can be used to approximate
the age of any object that was part of the biosphere. Using Libby’s
estimated half-life of 5568 years, the radiocarbon age of an object is
represented by the following equation:

 t ln
A

A0

= − 8033 (9.6)

 where:
t is time
A/A0 is the ratio of the remaining 14C atoms to the amount in the

atmosphere
ln is the natural logarithm

108 ◾ Modeling and Simulation with MATLAB® and Python

Write a program to create a graph of the number of atoms remaining in
a sample versus time. What is the approximate age of a bone found with
0.77% of 14C?

9.2.3 Constrained Growth

The obvious problem with models of unconstrained growth is that physi-
cal, ecological, and human systems are limited or constrained by the avail-
ability of energy, resources, or other capacity limitations of the system.
For businesses, the amount of growth will be limited by things such as the
availability of capital, the current production or staff capacities to build
and deliver products, competition from other providers, and market satu-
ration. Similar constraints will apply to all sorts of human-managed sys-
tems like public transit, public housing, and health systems.

For natural systems, forecasts of population change may be limited in many
ways. Of course, all populations experience deaths from natural and other
causes. As the population increases, the food supply may become limited,
raising the death rate in the population and therefore altering the population
base total. Food shortages may also alter the fertility rate of the population,
essentially changing the original growth rate. Other possible constraints
include disease, habitat alterations, predation, limited energy resources, and
limits to other nutrients. Extreme stresses on the population such as major
habitat losses, over harvesting by humans, and extreme weather events may
cause a complete population collapse. Meadows (1972), using the methods
introduced by Forrester, published a famous global look at these environ-
mental limitations in the book The Limits to Growth. Although technological
advances in agriculture and in other sectors have rendered some of their
predictions invalid at the global scale, there are certainly regional scale prob-
lems that have emerged due to shortages of water, fertilizer, and arable land.

There are several ways to reflect such constraints in systems models.
One approach is to incorporate a mathematical function that mimics the
shape of the growth curve over time as the population approaches these
limitations. In population forecasts, the logistic curve is often used in this
way. The general form of this equation is shown as Equation 9.7.

 f x
L

e k(x x
()

)
=

+ − −1 0
 (9.7)

where:
L is the curves maximum value or limit
k is the steepness of the curve

Nonlinear and Dynamic Models    ◾    109

x0 is the value of x-value of the midpoint
e is the natural logarithm

Assuming there are no significant changes in the environment, the max-
imum value of the population can be defined as the carrying capacity
for that population. The carrying capacity is the maximum size of the
population that can be supported by a particular environment. One way
of implementing this function in a population forecast is to add a death
rate function that subtracts from the population as it approaches the
carrying capacity.

Putting this together with the exponential growth rate associated with
births results in the following equation:

 ∆ ∆ ∆ ∆P P t t R
P t t

C
t= − ∗ ∗ − − ∗()

(())
1 (9.8)

where:
ΔP is the change in the population
P(t − Δt) is the net population change in the previous period
R is the birth rate
C is the carrying capacity

The first term represents the results of the births in the period added to the
previous period base. The second term uses the ratio between the resulting
population and the carrying capacity to modify the additional population
added in the time increment. When the ratio is small, the population will
grow at nearly the exponential rate. As the carrying capacity is approached,
there are increasing reductions in the population resulting in a leveling off
of the population growth. One of the exercises for this chapter is to pro-
gram that model and graph the resulting distribution.

Although this approach may mimic the form of the population changes,
the model does not explain the underlying causes of those changes. More
sophisticated models have explicit relationships across the growth and
constraint factors. In population models, these may include age-specific
death rates, the limitations of the food supply or habitat, the occurrence of
disease, predation, and other factors.

In the industrial dynamics models started by Forrester, const raints
included such factors as the availability of capital, the current production
capacity, market penetration, availability of labor, and management expertise.

110 ◾ Modeling and Simulation with MATLAB® and Python

Similar approaches have been used to forecast a variety of social and eco-
nomic phenomena including land use change, the growth of social move-
ments, and the housing market.

Estimating the values of all of the relevant parameters can be difficult.
The accuracy of the model will be influenced by the availability of data
for the system in question. However, even without exact measurements
of all of the relationships, models can be used to answer what if questions
associated with reasonable variations in the model parameters, providing
important insights into system behavior.

9.2.3.1 Constrained Growth Exercise
To model constrained growth, you will build a population dynamics
models for predator and prey, which includes part of the interactions
conceptualized under this topic. The interactions are based on a model
formulated by an American demographer Alfred Lotka and an Italian
physicist named Vito Volterra working independently (see a summary
of this work at https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_
equations). The model expressed as a difference equation for rabbits and
wolves is as follows:

Rabbits (t 1) Rabbits (t) rabbits (t) rabbit growth rate+ = + ∗

−− ∗ ∗

+

rabbits (t) rabbit death rate wolves (t)

Wolves (t)1 == + ∗ ∗

−

Wolves (t) wolves (t) wolf growth rate rabbits (t)

woolves (t) wolf death rate∗

where t is the time increment.
If we start with the basic growth model from interest and instead calcu-

late rabbits, the only information we need is the rabbit growth and death
rates and the initial number of wolves to satisfy the first equation. Similarly,
we can use the basic growth rate model to model the wolf population need-
ing only the wolf birth and death rates and the initial rabbit population.
Create a model that incorporates these new factors and plot the population
of rabbits and wolves on the same graph over time.

Here are the parameters you should use to start. If your model
works correctly, you should observe a cyclical pattern where the prey

https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations
https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations

Nonlinear and Dynamic Models    ◾    111

increases followed by an increase in predators and then a decline in both
(Table 9.2).

You should notice that the pattern that emerges is becoming increas-
ingly unstable, with larger peaks and valleys. Change the model param-
eters to investigate how a more stable population might be achieved. Then
discuss the design of a more complex model including the incorporation of
additional components of the data that would be needed to implement it.
Discuss the findings of your model along with those concerning the design
of the more complex model.

9.3 MODELING PHYSICAL AND SOCIAL PHENOMENA
The growth model examples illustrate how one implements a nonlinear
model given a set of governing equations that represent changes in the
phenomenon being modeled with respect to time. Models of physical
phenomena use scientific laws and theories to construct the equations
governing their behavior. Those theories have also been tested against
experimental data that have confirmed the efficacy and have led to modi-
fications of the representation that more closely match the experimental
evidence.

For social phenomena, there are also underlying theories but human
behavior is not subject to the definition of scientific laws with the same
level of certainty. Instead, those models are most often based on empirical
evidence from primary or secondary data sources that are used to estimate
one or more governing equations. Making such estimates will be discussed
further in Chapter 10.

In either case, anyone modeling a system needs to understand its limits
may lie either in empirical terms from observations of data or from the
underlying scientific or engineering principles that have been developed
from accumulated knowledge. Following these general guidelines will help

TABLE 9.2 Initial Parameters for Predator Prey Model

Parameter Rabbits Wolves

Growth rate 0.1 0.005
Initial population 40 15
Death rate 0.01 0.1
Time period 200 200

112 ◾ Modeling and Simulation with MATLAB® and Python

to ensure that the models you formulate either account for those limits or
explicitly indicate that they are missing and need to be considered:

 1. Define the purpose of your model and the accuracy required to make
a correct decision.

 2. Conduct a literature search that focuses on models of the same phe-
nomena that have been developed by others. Full understanding of
more advanced models will often require a deeper background in
mathematics as models are likely to use linear algebra, differential
equations, and/or partial differential equations to express the under-
lying relationships.

 3. Create a conceptual model that accounts for the factors that are
included in those other models and the assumptions made in those
models.

 4. Identify how well the models estimated the observed results and the
potential sources of error indicated in the literature.

 5. Identify the risks associated with your model giving a wrong answer
and how this relates to the known errors. For example, if you are mod-
eling a skydiver, an overestimate of how effective the parachute will
be at slowing down the decent once it is open could result in injury or
death. In such a case, we would prefer to err on the conservative side
and either open the parachute sooner or use a bigger parachute that
slows us down more to avoid that risk.

 6. Honestly report the limitations of your model with respect to both
known and unknown causes of model variation.

If you take these steps, you will build an understanding of the system
being modeled and will build a model that provides the insights you seek.

9.3.1 Simple Model of Tossed Ball

Suppose we are standing on a bridge and toss a ball into the air over
the side of the bridge. To model the vertical fall of the ball until it
reaches the ground, we must account for several forces acting on the ball.
When we toss the ball, we are exerting an upward force on the ball. At the
same time, the force of gravity is exerted in the opposite direction, which,
after a short time, results in the ball falling toward the ground. To track

Nonlinear and Dynamic Models    ◾    113

the progress of the ball, we can create a model that includes its velocity,
acceleration, and position over time. At any instant of time, the velocity
can be derived by calculating the change in position over the time period.
Thus velocity can be represented as

 v t
dp

dt
()= (9.9)

where:
v is the velocity at time t
dp is the change in position

Acceleration (a) is then the change in velocity over time:

 a t
dv

dt
()= (9.10)

The change in acceleration is due to the force of gravity. This is approxi-
mately −9.81 m/s2.

These relationships lead to the derivation of these kinetic equations for
the free fall of an object due to gravity:

 p v t gt pi= ∗ + +.0 5 2
0 (9.11)

 v v gi
t= ∗0 (9.12)

where:
p is the position of the ball and p0 is its initial position
vi is the velocity and v0 is the initial velocity
g is the acceleration due to gravity
t is the time

These equations are used to solve for the position and velocity of the ball
in one of the programming exercises in this section.

9.3.2 Extending the Model

The model of a free falling object assumes that there are no other forces
acting on the object. In order to account for friction and other forces that
act on such an object, we need to incorporate several other components.
The first of these is Newton’s second law of motion.

114 ◾ Modeling and Simulation with MATLAB® and Python

The other force acting on a falling object is friction. For an object moving
through a fluid, the frictional force is called drag. In the case of the ball,
a bungee jumper, or skydiver, the objects are moving through air. The
general formula for the force of drag Fd is as follows:

 F
C v A

2
d

d
2

= ρ (9.13)

where:
Cd is the drag coefficient
ρ is the density of the fluid; for air at sea level this is 1.29 kg/m3

v is the velocity of the object
A is the objects area in the direction of movement called the characteristic

frontal area

The drag coefficient is a dimensionless coefficient that takes into account the
object’s shape. Note that the drag increases with the square of velocity. The
drag force is in the opposite direction of the force of gravity. Thus, for a sky-
diver, the parachute is designed to create sufficient drag so that the person
will hit the ground at a speed that will not cause any injury.

A more complete model of a skydiver will therefore need to account
for the forces in both directions and how they vary with respect to time in
order to track the velocity of the skydiver as they reach the ground. Creating
such a model is one of the capstone projects presented in Chapter 14.

9.3.2.1 Ball Toss Exercise
Using the information in this chapter, program a simple model of a ball
tossed straight up from a bridge. Model it as a falling object as discussed
in Section 9.3.1. Assume that the bridge is 15 m above the ground and that
it is thrown upward at a velocity of 25 m/s. Model its velocity and position

Newton’s second law states that a force F acting on an object of mass m
gives the object acceleration a or

F ma=

Force is measured in N or kg m/s2. The mass is measured in kg and the
acceleration as m/s2. The acceleration is due to the force of gravity as used
in the ball toss model.

Nonlinear and Dynamic Models    ◾    115

over time until it reaches the ground. Discuss the following questions as
part of your exercise:

 1. What are the assumptions underlying this model?

 2. What other functions would we need to add to the model to relax the
major assumptions?

REFERENCES

Bowman, S. 1990. Radiocarbon Dating. Berkeley, CA: University of California
Press.

Forrester, J. 1961. Industrial Dynamics. Cambridge, MA: MIT Press. (Also available
online at https://babel.hathitrust.org/cgi/pt?id=mdp.39015002111774;view=1
up;seq=9).

Libby, W. F. 1955. Radiocarbon Dating. 2nd ed. Chicago, IL: University of Chicago
Press.

Meadows, D. H. 1972. The Limits to Growth: A Report for The Club of Rome’s
Project on the Predicament of Mankind. New York: Universe Books.

Systems Dynamics Society. 2016. Introduction to systems dynamics. http://www.
systemdynamics.org/what-is-s/ (accessed August 2, 2016).

http://www.systemdynamics.org/what-is-s/
http://www.systemdynamics.org/what-is-s/
https://babel.hathitrust.org/cgi/pt?id=mdp.39015002111774;view=1up;seq=9
https://babel.hathitrust.org/cgi/pt?id=mdp.39015002111774;view=1up;seq=9

http://taylorandfrancis.com

117

C h a p t e r 10

Estimating Models
from Empirical Data

10.1 USING DATA TO BUILD FORECASTING MODELS
There are a number of circumstances when there will not be an exist-
ing modeling framework and mathematical representations of the sys-
tem under study. For example, one may be working with a new material
whose responses to different stresses are unknown. In such a case, there
may be experimental data that describe the relationships between the
state of the material and the stresses applied. Scientists who are explor-
ing the relationships between genetics and disease mine those data to
define and test models of those relationships. In a similar way, data on the
economy are used to derive models of market behavior under a variety
of circumstances.

In all of these cases, one must use the available data to build an empiri-
cal relationship among the causes and effects that can then be used to
simulate the behavior of the system. There are a large number of statistical
techniques that can be used to build such relationships. A comprehensive
presentation of those techniques is beyond the scope of this chapter. For
those interested in further exploration, there are some references avail-
able at the end of this chapter. Instead, we will focus on introducing the
techniques for fitting a function to an empirical dataset, estimating the
goodness of the fit, and discussing the limitations and pitfalls of incorpo-
rating those functions into a predictive model.

118 ◾ Modeling and Simulation with MATLAB® and Python

10.1.1 Limitations of Empirical Models

Models based on empirical relationships can be a valuable starting point
to understanding how systems behave. However, there are a number of
assumptions that are implicit in creating models from those relationships
that need to be taken into account.

For data obtained through laboratory experiments, there are generally
clear cause and effect relationships embedded in the experimental design.
Under a set of standard conditions, the experiment varies the inputs
(causes) in a consistent way and then measures the outcomes (effects) on
the experimental system. A plot of the causes versus effects can be used
to define a mathematical function that best fits the system. There will be
several limitations to the application of that function to forecasting the out-
come under circumstances that were not measured in the laboratory. First
and most important, the forecast will not be valid beyond the limits of the
experimental data. The behavior of the system beyond the experimental
results is unknown. Although it may continue along the same trajectory, it
might also completely change its behavior under different circumstances.

Caution must also be used because the experiments have been run under
a standard set of conditions and have not tested the relationships under all
possible conditions. For example, tests of the mechanical properties of a new
material may not have included all possible types of mechanical failure or
not tested for failure under all possible circumstances. Behaviors may change
under different pressure or temperature conditions. The empirical data
describes a limited set of relationships but does not fully explain the relation-
ships in the entire system. Thus, the limitations of the experiment translate
into limitations in the models created from the experimental data.

For datasets that include observations in open systems where standard-
ized controls are not possible, additional limitations arise. For example,
samples of aquatic biology and related physical and chemical measures of
water pollution are only taken intermittently in very discrete locations along
a stream. Sampling then has both spatial and temporal limitations that could
limit the ability to explain a decline in the diversity of the aquatic biota in
response to environmental stresses such as water pollutants. The response
of the biota to a stress may be due to an event in the same section of the

An empirical model cannot be used to predict the system behavior beyond
the range of the data.

Estimating Models from Empirical Data    ◾    119

stream or an upstream event, which migrated downstream. Depending on
the timing of water sampling, the cause may or may not be captured in the
dataset. In addition, the cause could be a combination of several pollutants,
some of which might have been measured and others that have not been
 measured. An empirical relationship in such a circumstance may capture
one or more independent variables that appear to be related to the decline
in biota but there may be other causes that covary with what has been
 measured. In addition, the sample may not be representative of all possible
conditions, which will introduce other biases into the statistical analysis.

These kinds of problems can be even more complicated with socioeco-
nomic data gathered by the U.S. Census or through other surveys and indi-
ces. Individual responses are generally not available to the public to protect
the privacy of individuals and businesses. Thus, they are reported as summa-
ries for larger geographic units that are not necessarily homogenous in their
measured characteristics. A census tract may encompass several different
neighborhoods with a different mix of population, housing, public services,
and businesses. In addition, many socioeconomic variables are highly corre-
lated with one another making it difficult to define what is the real cause of a
change. For example, a data analysis of migration within a metropolitan area
from the central city to the suburbs might show that both income and educa-
tion are the important determinants of the likelihood to migrate. However,
income and education are highly correlated. Do people migrate because they
have the economic means to move and desire to have larger single family
homes in the suburbs? Are they more educated and therefore desire to move
because they perceive that suburban schools are of higher quality? Is there
another circumstance that is the underlying cause of their migration such as
the perception of crime in the target neighborhoods that is not represented
in the data? All of these may play a role but sorting them out from the empir-
ical data may not be possible. One must carefully think through the possible
causes and effects and use one or more proxy variables that are representa-
tive of the possible driving forces to forecast the trends without placing too
much confidence that the causes are understood.

Finally, the sampling associated with empirical models constrains the
validity of the projections if there are circumstances that would change

Empirical models can be used to forecast the trends in circumstances but
do not necessarily fully capture the underlying causes of the changes in
the system.

120 ◾ Modeling and Simulation with MATLAB® and Python

the relationships if the samples were taken at a different time or in differ-
ent places. Going back to our example of the diversity of biota in a stream,
we would need to ascertain whether the datasets are representative of a
typical year or if they contain instances of infrequent but cyclical events
such as droughts or floods. The stresses caused by these intermittent
events can easily create a bias in our empirical model. In a similar vein, the
spatial distribution of our sampling distribution may not capture unusual
events in the watershed such as a toxic spill or the runoff of a large amount
of sediment from a construction site upstream.

With socioeconomic data, we often use both current surveys and his-
torical data to construct models of a myriad of behaviors relating to mar-
kets, travel, and social trends. These models assume that our past samples
are representative of what will happen in the future. However, there may
actually be changes in technology, economic circumstances, or social atti-
tudes that profoundly change what will happen in the future. If someone
was modeling the underlying causes of traffic fatalities, could they have
anticipated the change in technology that has caused a large number of
accidents because of the distractions of text messaging?

With all of these caveats in mind, it is still useful to build models from
empirical datasets. Such models can lead to a deeper understanding of the
system and guide future research, policy, and management decisions. The
relationships that are defined may also lead to a full explanation of system
behavior that can be incorporated into future models. The following sec-
tions introduce methods to define and measure the efficacy of empirical
models and provide several examples.

10.2 FITTING A MATHEMATICAL FUNCTION TO DATA
The first step in creating a model from empirical data is to assess the
nature and strength of the relationship between the independent (causal)
variable(s) and dependent (effects) variables. This can be done in several
ways. For a simple two variable case, plotting the data points for one vari-
able against the other (often called an XY or scatter graph) may be good
starting point.

When using an empirical model to make forecasts for a system, it is impor-
tant to specify all of the implicit and explicit assumptions associated with
the spatial and temporal nature of the underlying dataset.

Estimating Models from Empirical Data    ◾    121

As an example, download the file paintcr2.csv from the book web-
site. The file has two columns representing a sample of two water qual-
ity variables from the Paint Creek watershed in Ohio. The first column
is a numeric indicator of the diversity of the fish population in a sec-
tion of the creek called the index of biotic integrity (IBI). The IBI ranges
in value from 12 to 60 where values in the range from about 44 to 60
indicate watersheds that exhibit the diversity of the fish population that
would be expected in an unpolluted, natural stream in Ohio. The second
column represents the maximum value of total suspended solids (TSS_
MAX) found in the same stream segments where the IBI was measured.
Sediments are pollutants brought into the stream via erosion that damage
the aquatic habitat by covering the bottom of the stream where fish may
lay their eggs or find their food sources. At the extreme, sediments make
it difficult for fish to see their prey, further hindering their success. Thus,
we would hypothesize that as the level of TSS goes up, the diversity of the
fish population would go down. We will use the data to test this hypoth-
esis and create a statistical model of that relationship. Use the following
instructions for MATLAB® or Python to import the dataset and make an
XY plot of the relationships:

For those using MATLAB, from the home tab, choose Import Data.
A window will open that will allow you to go to the directory where
you have downloaded the file and choose the paintcr2.csv file. The
table should appear showing the nine rows representing the sam-
ples for IBI and TSS_MAX. Relabel the columns by double-clicking
and inserting the correct variable names. Then click on the import
selected button to import the data. Use the code in the following box
to create an XY graph.

For Python, click variable explorer and choose the Import Data option
from the right side icons. Navigate to the paintcr2.csv file and import
it as data. It will appear in the variable explorer as a 9 by 2 matrix.
Use the Python code below to extract the two variables and make
the XY plot.

MATLAB CODE

sz=45;%sets the size of circles in the plot
scatter (TSS_MAX, IBI, sz,'ko','filled');%x axis is TSS
black circles

122 ◾ Modeling and Simulation with MATLAB® and Python

You should see a plot that matches Figure 10.1.

10.2.1 Fitting a Linear Model

Examination of the scatterplot shown in Figure 10.1 indicates that the
relationship between these two variables appears to be linear. We could
draw a line on the graph that comes near many of the points but that
would be arbitrary and would not yield a measure of how well that line
compares to other possible lines.

The standard way of tackling this problem is using the technique called
linear regression. Linear regression assumes that there is a cause and effect

PYTHON CODE

import math
import matplotlib.pyplot as plt
import numpy as np
IBI=np.zeros(9)
TSS_MAX=np.zeros(9)
IBI=paintcr2csv[0:9,0]
TSS_MAX=paintcr2csv[0:9,1]
x=TSS_MAX
y=IBI
plt.scatter(TSS_MAX, IBI)

10
35

40

45

50

55

60

20 30 40 50 60 70 80

FIGURE 10.1 X-Y plot of index of biotic integrity and maximum total suspended
solids.

Estimating Models from Empirical Data    ◾    123

relationship between the predictor or independent (x) and response or
dependent (y) variable:

 y=a +bx +ε (10.1)

where:
x and y are the predictor and response variables respectively
a is the intercept of the line
b is the slope of the line
ε is the error or residual between the model and the observations

The approach used to establish the best fit line and calculate the error is
to minimize the sum of the squares of the residuals. This is illustrated
graphically in Figure 10.2. The residuals are measured as the vertical
distance between the line and the observations and several of which are
shown in the figure as dotted lines. For our example dataset, we provide
an exercise at the end of this chapter to derive the relevant regression
equation.

We are assuming at least a basic understanding of the general principles
of descriptive and inferential statistics and will not repeat them here. In
addition, the underlying mathematics of the least squares function are
illustrated in great detail by several authors and will not be covered here
(Draper and Smith, 1998; Chapra, 2008). Please consult these references
and any introductory statistics sources for further information and more
extensive applications of regression techniques.

10 20 30
30

60
y = −0.3041∗x + 58.25

55

50

45

40

35

40 50 60 70 80

Data1
Linear

FIGURE 10.2 Fitted regression line and residuals.

124 ◾ Modeling and Simulation with MATLAB® and Python

For our use in building a linear model, we need to understand sev-
eral important statistics that are calculated as part of regression analy-
sis. First, there is a standard error of the estimate. This is the measure of
the dispersion of the original data around the regression line. The second
statistic is called the coefficient of determination or R squared (R2). This
number represents the percentage of the variance that is explained by
the regression equation. The closer the R2 value is to 1, the better the fit
between the sample data and the regression line.

The third set of statistics involves a test of the significance of the regres-
sion equation and its coefficients. We want to make sure that the relationship
could not have happened by chance. Two types of tests are often applied in
this regard. For the equation as a whole, a comparison is made with a stan-
dard table called the F distribution. Both the F statistic and the probability
of F are often reported by statistics program. We want to be able to say that
there is a low probability that the relationship happened by chance. For the
most stringent test of significance, we want to find that the equation had
less than a 1% probability of happening by chance. Sometimes a probability
of less than 5% is also acceptable. The t test is a similar test of probabilities
associated with both the intercept and the coefficient for the slope of the
line. These are again reported as a probability that is compared with the 1%
or 5% criterion to determine the significance of the coefficients.

Table 10.1 is an illustration of the full output of a linear regression rou-
tine. The dataset used is from the Center for Disease Control of statewide
rates of smoking and heart disease deaths. The percentage smokers is the
predictor variable and the heart disease deaths are the response variable.

TABLE 10.1 Regression Results from CDC Data on Smoking and Heart Disease
Deaths by State

Model Linear Regression
Model: Rate ~ 1 +
CurrentSmoking

Estimated
coefficients:

Estimate Standard
Error

tStat pValue

(Intercept) 40.672 22.776 1.7857 0.080332
CurrentSmoking 5.1244 0.97289 5.2672 3.0752e-06

Number of observations: 51, Error degrees of freedom: 49
Root mean squared error: 20.4
R-squared: 0.362 Adjusted R-squared 0.348
F-statistic vs. constant model: 27.7 pValue =

3.08e-06

Estimating Models from Empirical Data    ◾    125

The table was generated using the MATLAB fitlm (for fit linear model)
routine that is in the statistics toolbox. There are actually several ways in
both MATLAB and Python to generate regression and curve fitting func-
tions, which will be discussed later in this chapter.

We can use the output shown in Table 10.1 to construct our linear
model and judge its efficacy. The coefficients for the linear model are
shown under the estimate column in the table. If we accept the model the
equation would be as follows:

 Heart Rate Deaths = 40.672 + 5.1244*CurrentSmoking

We can see that the pValue for the intercept is over 0.05, and the value
for CurrentSmoking is much less than 0.01. Thus, we might want to run
the model again forcing the intercept to be zero. We also see that the over-
all model is significant with a very small pValue but we are only explaining
part of the variance in the distribution. There are two R-squared values
that show us this. The adjusted R-square is usually the one we use. It is
adjusted relative to the degrees of freedom associated with the model. It
shows us that 34.8% of the variance is explained.

Clearly, there are other risk factors for heart disease deaths that are
not captured by this empirical model. We could choose to use this model,
acknowledging that it underestimates the risk. Alternatively, we could
search for other risk factors that might create a better model.

10.2.2 Linear Models with Multiple Predictors

When we have data with several possible predictors associated with a
response, we can use multiple linear regression to estimate the contribu-
tion and significance of each of the predictor variables. We do this by com-
bining several linear estimators in the same equation as represented in
Equation 10.2:

 y a b x b x b x b xn n= + + + +… +1 1 2 2 3 3 ε (10.2)

The solution provides a coefficient b for each of the x predictor variables
along with an indication of their significance. There are several circum-
stances, which may produce a biased estimate of the coefficient of deter-
mination and coefficients. One occurs when two or more of the predictor
variables are strongly correlated or colinear. For example, this often occurs
in social science models that use demographic information such as age,
income, and education, which are strongly related. There are several other

126 ◾ Modeling and Simulation with MATLAB® and Python

statistics that can be used to test for this problem and follow-on strategies
to remove the biases. A full discussion of these techniques is beyond the
scope of this chapter. Draper and Smith (1998) discuss all of these prob-
lems and strategies in detail as do many statistics textbooks.

In multiple regression, the output will provide a table showing the
 significance of each of the independent variables, the R2 values, and
the significance of the overall equation. In this way, we can determine
which of the predictor values to use in a final empirical model while get-
ting an estimate of the overall variance explained by the model and the
scope of the errors.

10.2.3 Nonlinear Model Estimation

What do we do if the relationships between the predictor and response
variables are nonlinear? In such cases, we have several choices for cre-
ating an empirical model. In some cases, we can apply a mathematical
transformation of the input data that create a linear representation of
the system. Table 10.2 shows the transformations for the exponential
and power functions, their linear form, and the predictive equation
that can be used to make a forecast with the estimated coefficients. For
the exponential distribution, we take the natural log (shown as ln) of the
response variable.

The coefficients from that analysis can then be used with the original
data as a predictor of the response variable y as shown under the predic-
tor equation column in Table 10.2. Similarly, the power function can be
linearized by taking the logarithm (here shown as log for log base 10) of
both the predictor and response variables and then apply the linear coef-
ficients to create a prediction equation.

As an example, we will use the data from the graphing example in
Chapter 5, which showed the reduction in light intensity with distance.
Figure 10.3 shows that relationship with a sample of seven measurements.

We can recognize from the shape of the graph that this is probably a
negative exponential function. In order to linearize the relationship, we
will need to take the natural log of the response variable, light intensity

TABLE 10.2 Examples of Linear Transformations of Nonlinear Data

Distribution Equation Linear Form Predictive Equation

Exponential y e x= α β ln() ln()y x= +α β y e x= +α β
Power y = α βx log() log()y log()= +α β x y = 10 xα β

Estimating Models from Empirical Data    ◾    127

and then regress this against the predictor variable, distance. Using either
MATLAB or Python, import the raw data from the file light_data.csv
from the book website. The first column is the predictor variable, and the
second column is the response variable.

Our first step is to create a new variable llight, which is the natural
logarithm of the predictor variable. To find the built-in functions for this,
you can use the help item in MATLAB to search for math functions. For
the Math and SciPy modules, you can find a list of the built-in math func-
tions on the websites cited at the end of this chapter. In both cases, this is
the log() function. Thus, we take the log of the response variable vector to
create a new vector called llight.

Now we can use one of the tools from MATLAB or Python to create
a linear regression of llight as a function of the original distance data. In
both cases, there are several options that can be used to fit a linear model.
They vary both in their syntax and the amount of information they give
us about the goodness of fit.

Tables 10.3 and 10.4 provide examples of the several ways that one
can fit a linear or nonlinear equation to a dataset in MATLAB and
Python, respectively. Here, we will provide one example of each but pro-
vide an opportunity to try several others as part of the exercises at the
end of this chapter.

10 12 14 16 18 20 22
Distance (cm)

100

200

300

400

500

600

700

800

900

1000

In
te

ns
ity

 (l
ux

)

FIGURE 10.3 Light intensity as a function of distance from the source.

128 ◾ Modeling and Simulation with MATLAB® and Python

TABLE 10.4 Python Procedures to Fit Linear and Nonlinear Models

Procedure and Syntax Description

Scipy.optimize.curve_fit
from scipy.optimize import curve_fit
def line(x, a, b):
return a * x + b

popt, pcov=curve_fit(line, x, y)

Defines a linear or nonlinear
function and then input function,
x and y variables to curve_fit.
Returns the coefficients and
covariance matrix.

Scipy.stats.linregress
from scipy import stats
slope, intercept, r_value, p_value, std_err = …stats.
linregress(x, y)

print (intercept, slope, r_value**2, p_value)

Linear regression that returns
coefficients, r, and p values.

Statsmodels ordinary least squaresa

import pandas
from statsmodels.formula.api import ols
data = pandas.DataFrame({‘x’: distance,
‘y’: llight})
model = ols(“y ~ x”, data).fit()
print (model.summary())

Full function ordinary least
squares. Requires the use of the
panda dataframes. Returns all the
coefficients, p values, and a
number of other statistical
measures relating to the equation.

a There are a number of related routines in NumPy, Scipy.stats, and statsmodels related to
these examples.

TABLE 10.3 MATLAB® Procedures to Fit a Linear or Nonlinear Model

Procedure and Syntax Description

Curve Fit App in the GUI interface Allows a fit of two variables for both linear
and nonlinear functions. Linear regression
is fit using a first-order polynomial and
outputs a graph, coefficients, and
R-squared values.

curve_fit function:
curve_fit=fit(x,y,fittype)

Using the fit type, “poly1” produces the same
statistics as the app but without the graph.
Choosing exponential or another nonlinear
form will fit that form to your data.

fitlm: lim=fitlm(x,y) Use in program or command line. Provides
coefficients, t and F statistic probabilities,
R-squared values, residuals, and other
statistics.

fitnlm:
beta0=[5000−0.1];
X=Distance;
y=Lumens;
modelfun= @(b,x)(b(1)*(exp(b(2)*x)));
mdl=fitnlm(X,y,modelfun, beta0)

Fit a nonlinear model to a nonlinear
function provided by the user along with
an initial estimate of the coefficients.
Returns the coefficients along with the
t and F statistics probabilities. Requires an
initial estimate of the coefficients that is
reasonable, or the algorithm may not work.

Estimating Models from Empirical Data    ◾    129

For MATLAB, we will use the built-in curve fitting application to
fit the transformed data to a linear equation. Go to the top menu in
MATLAB with a tab labeled as APPS and choose Curve Fit. Add a title
and choose the input values for x (distance) and y (llight). The stan-
dard linear model can also be represented as a first degree polynomial.
Thus, in the center of the curve fit window, we choose polynomial,
degree 1 as the fit and click on the Fit button. You should get a screen
that looks like Figure 10.4. The graph shows the predicted line with a
plot of the points around that line. The left side text shows the regres-
sion results.

We can perform a similar function in Python using the Scipy curve fit
option shown in Table 10.4. For many of the Python and several of the
MATLAB options, we need to specify the function that will be used to fit
the data. As shown in Table 10.4, we define a linear function and then use
this function in the curve fit procedure. The function returns the coef-
ficients in the linear equations. We could then use the plotting functions
to create a graph similar to Figure 10.4.

FIGURE 10.4 Output of the MATLAB® curve fitting app for the light attenuation
data.

130 ◾ Modeling and Simulation with MATLAB® and Python

10.2.3.1 Limitations with Linear Transformation
Transformation does not always provide the best model for a nonlinear
distribution. The regression model assumes that the scatter of points
around the best fit line is a normal distribution. This is not always the case
with the transformed data. What were outliers in the original distribution
may appear to be closer to the fitted line and bias the R2 value. Care should
be taken to calculate the predicted values and plot them with a scatterplot
of the original data to see if there is a good match.

10.2.3.2 Nonlinear Fitting and Regression
A second choice is to fit a curvilinear function to the original data. Fitting
to a curvilinear function follows the same general principles for calculat-
ing the goodness of fit. In nonlinear regression and curve fitting, a non-
linear equation is fitted as part of what is called the generalized linear
model. Both MATLAB and Python have algorithms that then find the
least squares fit for the dataset. Tables 10.3 and 10.4 show some of the non-
linear fit methods for MATLAB and Python.

The curve_fit functions in MATLAB provide a choice of fit types
that can be used in the calculations. The fitnlm (for fit nonlinear model)
requires the user to input a function that is called in the function syn-
tax. The model shown in Table 10.3 uses this syntax: modelfun= @(b, x)
(b(1)*(exp(b(2)*x))). The variables in the model are b and x, the intercept
and independent variable, respectively. The mathematical representation
that follows defines the exponential model with the two coefficients: b(1)
and b(2). Other mathematical functions such as third degree polynomi-
als would have additional coefficients for which to solve. There are also
functions that allow more than one independent variable in the general-
ized linear model. Those models are not shown here but follow the same
principles except that more than one independent variable is specified by
providing a matrix of inputs.

A similar approach is taken in the Python examples as shown in
Table 10.4. Functions are used to define the form of the nonlinear fit and
then submitted to the curve fit function. Python also has several statis-
tics packages. These include the Scipy.stats and the Statsmodel packages
(Scipy.stats, 2016; Statsmodels, 2016). The most robust generalized linear
model is in the Statsmodel package. It is often coupled with the use of
the Pandas Data Analysis Library, which facilitates the handling of large
datasets and provides a simplified syntax for specifying statistical models
(Pandas Library, 2016). In Table 10.4 we show the simple syntax for the

Estimating Models from Empirical Data    ◾    131

ordinary least squares made possible by importing the panda library. We
will not be reviewing that library here but provide a reference to those who
wish to use it (Thomas, 2016).

10.2.3.3 Segmentation
In circumstances where the data distribution has two or more distinct
shapes, an approach called segmentation can be used to create separate
linear or nonlinear models for each segment. Such circumstances might
arise when the phenomenon being modeled changes behavior at distinct
points. For physical phenomena, that may be the case if there is a change in
state due to changes in conditions like temperature or the amount of stress.
For social systems, there may be a tipping point where a market changes
behavior such as the real estate values in a gentrifying neighborhood or
rents in parts of cities with high crime rates.

The same curve fitting approaches are followed for each of the distinct
segments. The resulting model then must check for the values of the inde-
pendent variables at the segment boundaries and apply the appropriate
predictive model for that segment.

EXERCISES
 1. Use the Paint Creek dataset to find the coefficients for a linear model

using at least two of the different procedures in either MATLAB or
Python. For the procedures that do not produce a graph, create a
graph showing the regression line and the distribution of the origi-
nal points around that line. Create a report showing your results.

 2. Use the light dataset to create both the transformed linear model
and a nonlinear, exponential model of the relationships in either
MATLAB or Python. For the linear model, calculate the predicted
values from the model and plot that as a line along with the scatter
of points from the original dataset. For the nonlinear model, create
a similar graph. Compare the two models in relation to the values
of adjusted R2, the significance of the coefficients, and the scatter of
the original data around the predicted curve. Which model do you
think works better in this instance? Create a report showing your
results and analysis.

 3. Find another dataset of interest to you where you hypothesize a
cause and effect relationship between one response variable and one
or more predictor variables. Plot the relationships and then choose

132 ◾ Modeling and Simulation with MATLAB® and Python

one or more curve fitting functions to test the strength of the rela-
tionships. Prepare a report showing the statistical results and plots
illustrating the model.

FURTHER READINGS

Math Functions. Scipy.org. https://docs.scipy.org/doc/numpy/reference/routines.
math.html#exponents-and-logarithms (accessed November 11, 2016).

Mathematical Functions. Python Software Foundation. https://docs.python.org/3/
library/math.html (accessed November 11, 2016).

REFERENCES

Chapra, S. C. 2008. Applied Numerical Methods with MATLAB for Engineers and
Scientists. New York: McGraw-Hill.

Draper, N. R. and H. Smith. 1998. Applied Regression Analysis. New York: Wiley.
Pandas Data Analysis Library. http://pandas.pydata.org/ (accessed November 11,

2016).
Scipy.stats Documentation. https://docs.scipy.org/doc/scipy/reference/stats.html

(accessed November 11, 2016).
Statsmodels Documentation. http://statsmodels.sourceforge.net/stable/index.html

(accessed November 11, 2016).
Thomas, H. 2016. An Introduction to Statistics with Python. Switzerland: Springer

International Publisher.

http://pandas.pydata.org/
http://statsmodels.sourceforge.net/stable/index.html
https://docs.scipy.org/doc/numpy/reference/routines.math.html#exponents-and-logarithms
https://docs.scipy.org/doc/numpy/reference/routines.math.html#exponents-and-logarithms
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html
https://docs.scipy.org/doc/scipy/reference/stats.html

133

C h a p t e r 11

Stochastic Models

11.1 INTRODUCTION
Thus far, we have been working with deterministic models. Those models
have used parameters that remain constant throughout the simulation,
leading to a singular result. We have used sensitivity testing to explore the
impacts of changes in selected parameters but always in the same deter-
ministic framework.

There are many situations in which the values of one or more of our
model components are uncertain. There is an element of chance associated
with their values. In such cases, the models are said to be probabilistic or
stochastic.

There are many examples of situations where a Monte Carlo simulation
would better represent the system being studied:

• Environmental models impacted by variations in weather conditions

• The Brownian movement of molecules in a solution

• The behavior of a market

• Risks associated with business investments

A stochastic or probabilistic model is one, which includes one or more
random variables. Such models use Monte Carlo or random experiments
to draw values for selected variables from a probability distribution or sam-
pling of an empirical distribution.

134 ◾ Modeling and Simulation with MATLAB® and Python

• The spread of a forest fire with respect to wind speed and direction

• Fluid dynamics simulations

For some of the simple systems we have used as examples earlier in the book,
we can imagine stochastic versions of the models to represent those systems.
For example, our traffic model, we could insert a random probability that we
encounter other cars or pedestrians at intersections that would add time to
our commute. We could add the impacts of weather events such as precipita-
tion that would slow traffic below normal speeds. In fact, in our community
of Columbus, Ohio, the mere prediction of snow slows down the traffic!

In each case, we would create a random variable based on a sample of
data from observations to represent the probabilities of different condi-
tions. A random number generator would then be inserted into our code
to simulate the random effects. We would then run the model many times
and record the distribution of the outcomes to provide further insights
into the behavior of the system.

In this chapter, we will discuss the methods used to create stochastic
models and how these are implemented in both MATLAB® and Python.
Using simple examples, we will illustrate how the models can be run and
interpreted. Some examples of stochastic models from a variety of fields
will be presented. Finally, we provide some exercises where you build a
stochastic model.

11.2 CREATING A STOCHASTIC MODEL
The initial steps for creating a stochastic model are the same as those pre-
sented in Chapter 1. The model objectives are specified leading to a selec-
tion of the variables and the governing equations. For a stochastic model,
the first additional step is to select the variables whose values will vary
randomly. For each of those variables, several additional decisions need
to be made:

• Associate a probability distribution with the variable that reflects the
nature of the random variation of the variable. This could come from
experimental data, from other observations of the system, or from
the design parameters of an engineered system.

• Create a relationship between any given value or range of possible
random numbers and the value of the variable that will be inserted
into the simulation run.

Stochastic Models    ◾    135

• Choose an appropriate random number distribution from which to
draw the numbers for the simulation. Most of the random number
generators choose real numbers between 0.0 and 1.0. If we want all
values of the random sequence to have an equal chance of occurring,
we will use a uniform random number scheme. On the other hand,
it may be that we expect the distribution to be normal (a Gaussian or
bell-shaped curve) where it is more likely to get values closer to the
mean and less likely to get values at the either end of the distribution.
We will discuss this further in Section 11.3.

• Decide how many times we will run the model with the different
random variables.

• Prepare the appropriate code to draw random numbers, run the
model, and store the results from each run.

• Analyze the distribution of all the runs to gain insights into the sys-
tem being modeled.

A simple example should help to illustrate these steps. Recall that in the
traffic exercise, we assumed that traversing an intersection with a stop sign
would take 30 seconds on average. That would include the time to deceler-
ate, stop, and accelerate back to the maximum travel speed on that street
segment. However, we know from experience that it will take less time if
there are no conflicts with other cars or pedestrians at the intersection and
more time if such conflicts occur.

We can add a random variable to our model that varies the amount of
time at each stop sign depending upon the number and nature of conflicts
that occur at that intersection. To implement this, we could make obser-
vations of the target intersections along our route during the time of day
we would normally commute to work. Let us say we divided the events of
cars entering these intersections to the four categories in Table 11.1. For
those observations, we record the time at the intersection and the number
of times that event occurred. The table is then compiled showing us the

TABLE 11.1 Intersection Conflict Time Delays and Probabilities

Intersection Event Time Delay (seconds) Percentage of Events

Stop sign with no conflicts 10 30
Stop sign with single car conflict 20 20
Stop sign with pedestrian conflict 30 20
Stop sign with more than one conflict 60 30

136 ◾ Modeling and Simulation with MATLAB® and Python

range of time from 10 to 60 seconds along with the percentage of the time
that each event occurred. We can then use that distribution to alter our
program to include these random events.

One way to represent this distribution in our revised code is to draw
a uniform random number between 0.0 and 1.0. We could then insert
branching statements assigning an appropriate value of the time taken based
on the result of the random variable. For numbers between 0.0 and 0.30,
we would assign the value 10 seconds, for those between 0.31 and 0.5,
20 seconds, for 0.51–0.70, 30 seconds, and for 0.71–1.0, 60 seconds. We
would then add a loop to run the model a large number of times—say
100—and then evaluate the distribution of times and their impact on our
commute time along these routes.

If we wanted to add additional reality to our model, we could create
another random variable to choose weather conditions based on the his-
torical weather records and assign slower speeds to travel on days with fog,
rain, or snow.

There are other ways in which random variation can be used in models
in addition to using a random number generator for inserting random
effects into those models. Where there is a large dataset representing a
particular input or outcome, one can draw a random sample from the
dataset to examine the potential range of outcomes that could occur. For
example, one could draw a random sample of weather events during a
particular season to insert into models of the hydrological response of a
stream. Similarly, there may be a large dataset representing people’s home
purchasing behavior under different market conditions that could be
applied to a model of the housing market.

Another way that stochastic processes can be used is in the estimation
of complex mathematical integration. Stochastic models are used to esti-
mate the area under a curve by counting the proportion of points that fall
within finite subareas of the distribution.

11.3 RANDOM NUMBER GENERATORS
IN MATLAB® AND PYTHON

Both MATLAB and Python have several options for generating pseu-
dorandom numbers. The major options are shown in Table 11.2. One
important characteristic of all pseudorandom number generator algo-
rithms is that they start with a seed from which all subsequent numbers
are drawn. If you start the algorithm with the same seed, you will get
the same sequence of random numbers. Those are not truly random.

Stochastic Models    ◾    137

However, that characteristic is sometimes useful when debugging a pro-
gram to see if the answers match. To get closer to truly random numbers,
the seed should be varied.

Table 11.2 shows that MATLAB has three different random number
 generators for uniform, normal, and integer random numbers (MathWorks,
2016). Each time MATLAB starts, it resets to the same initial seed for ran-
dom numbers. The rng command allows control over the seed as well as
the algorithm that is used in generating random numbers. The command
can be used to save a particular starting point, reset to a starting point, set a
user defined seed, and set the generator algorithm. There is also a function
that can draw a sample for any defined probability distribution.

In Python, there are at least two sets of random number functions. One
resides in the random module and has separate commands for a variety
of distributions (Python Documentation, 2016). If no seed is provided
using a random command, the default is to set the seed to the system time.
NumPy also has a variety of random number and sampling commands
that operate in a similar way (NumPy Documentation, 2016).

11.4 A SIMPLE CODE EXAMPLE
Let us create a simple stochastic model to represent the random toss of
a coin. We can select a uniform random number between 0.0 and 1.0.
Assuming that the coin is balanced, there should be an equal probability

TABLE 11.2 Random Number Generators in MATLAB® and Python

Command Description

MATLAB Commands

rand Uniformly distributed random numbers
randn Normally distributed random numbers
randi Uniformly distributed pseudorandom integers
rng Control random number generation
random(pd) Returns random number from a probability

distribution
Python Commands

Random module (import random) rand Subcommands to generate uniform, normal,
or other distributions of random numbers

random.random() Uniform random numbers
random.gauss(mu, sigma) Normal random numbers with mean mu and

standard deviation sigma
numpy.random Module with many similar random number

generators

138 ◾ Modeling and Simulation with MATLAB® and Python

of getting a head or tail on each toss. Thus, if the random number that is
generated is less than 0.5, we can say that it simulated heads and if it is 0.5
or greater, it simulated tails. The following MATLAB and Python codes
show one approach to implementing this program:

In each code, we start by creating a vector of 100 to hold a set of random
numbers. We then initialize the random number generator. In MATLAB,
we can start with the default random number seed that occurs when the
program starts. Alternatively, we could insert our own numerical seed. In
Python, we insert our own seed. The default in Python is to use the system

MATLAB CODE FOR COIN TOSS SIMULATION

r=zeros([100:1]);
heads=0;
tails=0;
rng('default')
for j=1:100
 r(j)=rand();
 if r(j) < 0.5
 heads=heads+1
 else
 tails=tails+1
 end
end
heads
tails

PYTHON CODE FOR COIN TOSS SIMULATION

import math
import numpy as np
import random
r=np.zeros(100)
heads = 0
tails = 0
random.seed(8952)
for j in range(100):
 r[j]=random.random()
 if r[j] < 0.5:
 heads = heads+1
 else:
 tails = tails+1
print("heads= ",heads,"tails=",tails)

Stochastic Models    ◾    139

time as a seed. We then have a loop where we draw a random number
and increment either the head or tail variable depending on the outcome.
Finally, we print the values of the final count. Try out the code and see
what happens.

In both cases, we have provided a constant seed. Thus, if you run the
program multiple times, you should get the same answer since the same
pseudorandom numbers will be generated. This is an approach we might
use while debugging a program to make sure that there is nothing else that
impacts the outcome in unexpected ways. If we then want to run it with a
truly random sequence, we can change the code to use a seed, which changes
on each run by using something like the date and time or another random
number. We would then need to add code to save the final outcomes of each
run and then examine the distribution of the outcomes to gain insights into
the system behavior. We might also choose to increase the number of itera-
tions with the loop in a way, which better approximates the number of pos-
sible occurrences of the phenomenon under study per unit time.

11.5 EXAMPLES OF LARGER SCALE STOCHASTIC MODELS
There are many circumstances in which a Monte Carlo modeling approach
may be used. Those include the potential failure of components in complex
engineered systems, economic models of buying behavior in a market, the
movement of molecules in a solution (molecular dynamics), the impact of
travel behavior on roadway congestion, and changes in metropolitan land
use over time. We have chosen three examples to describe in more detail
here to illustrate the range of problems that can be addressed within this
modeling framework.

Kalos (1970) provides an early example of the use of Monte Carlo mod-
eling of the neutrons in a nuclear reactor. Neutrons are emitted by fis-
sionable materials to instigate a chain reaction while other materials in
the reactor serve to slow down the neutrons from fission, and neutron
absorbing materials control the reactor to protect the area outside the
reactor. Each of the steps in the life of a neutron is in part a random
process. This includes the fission that creates the neutron, the direction
it moves after it is created, and the speed of that movement. The neutron
moves in a straight line at a speed that is governed by a probability equa-
tion. It may then collide with other atoms or with other materials in the
reactor impacting the outcome of each movement. Those include causing a
new cycle of fission, scattering in a new direction, or disappearing because
it is absorbed. A fully functional model of all of these reactions requires the

140 ◾ Modeling and Simulation with MATLAB® and Python

tracking of a very large number of neutrons through many random cycles
with different arrangements of the fuel rods, pressure vessels, coolant
pipes, and other reactor characteristics. Bareiss (1970) provides an indi-
cation of the computational power required for different components of
reactor simulation.

Another situation in which Monte Carlo modeling has been used is in
managing service levels in retail establishments. For this example, let us
assume that we are the manager of a bank managing the number of tellers
that are available on various days of the week and times of the day. Ideally,
we want enough tellers on hand so that the wait time for customers is
acceptable while not having so many tellers that they have large chunks
of idle time. To solve this problem, we need to have a sufficient sample of
actual customer demand over the periods we are simulating. Those data
can then be converted into a probability distribution from which we can
generate a random set of customers arriving at the bank for service. In
addition, we need to know the distribution of the amount of time it takes
for the teller to complete the transactions for a single customer. We would
expect a range of transaction times from a simple deposit or check cashing
to a more complex combination of multiple deposits, withdrawals, and/or
other services. We could then simulate the random arrival of customers
approximating their distribution from the sample data, the transaction
times, and the resulting wait and idle times with different numbers of tell-
ers available. In this way, we could arrive at a schedule for the tellers, which
provides an acceptable waiting time for customers and low idle times for
the tellers. This approach could be applied to any retail service with the
potential for queuing customers awaiting service. A similar framework
has been used to simulate the impacts of traffic on congestion, the routing
of delivery services, and many other situations where queuing impacts the
efficiency of service delivery.

Keane et al. (2011) have created a comprehensive model for exploring
fire and vegetation dynamics. The model is a spatially explicit representa-
tion of the forest stand and the impacts of climate conditions on the prob-
ability and extent of widespread forest fires. The model defines polygons of
forest cover and then specifies a number of site parameters related to the
nature of the forest stand and ecosystem features. Both deterministic and
stochastic components of the model are used to simulate the potential for
fire and its progression under a variety of conditions. Stochastic compo-
nents include the influence of seed trees in seed dispersal, the potential for
a fire to spread from one area to others, and the long-term climatic pattern.

Stochastic Models    ◾    141

A complex set of tree stand level and landscape-level interactions are
 simulated taking into account a number of different biophysical processes,
the growth of the tree stands and undergrowth, and weather conditions.
These are then used to project the impacts of these interactions on the
potential for fire and its spread in a particular landscape.

Another spatially explicit landscape model by Voinov et al. (2004) was
used to simulate land use changes in the Patuxent River Basin in Maryland
and the impacts of those changes on water runoff and water quality. The
economic land use conversion model embedded in this effort used data on
property sales, the economic and ecological characteristics to estimate the
probability of the conversion of land from agriculture or forest into differ-
ent densities of urban development. The relative likelihood of land conver-
sion was estimated using an empirical analysis of the historical changes
in land use in the region based on factors such as distance to employment
centers, access to infrastructure, and proximity to other desirable and
undesirable land uses. The land use conversion results were then passed to
simulation routines that estimated water runoff and water quality and its
potential impacts on the health of the watershed.

Wilkinson (2011) provides an introduction to the need for stochas-
tic modeling in biology. He notes that even a simple model of bacterial
population growth needs to account for the discontinuous concentration
of bacteria and the stochastic nature of their growth. He notes that most
biochemical processes are driven by Brownian motion where a discrete
number of biomolecules interact when they meet at random times. He
provides examples of how stochastic modeling provides insights into bio-
logical processes.

Lecca et al. (2013) provide an excellent description and comparison
of the deterministic and stochastic approaches to modeling biochemical
processes. They go on to describe several of the major algorithms used to
model the stochastic processes in biochemistry. They also describe how
stochastic modeling is applied in systems biology. They use a specialized
programming language developed in Italy called BlenX that can be used to
address some of the challenges with modeling complex biological systems.

Many large-scale models include both deterministic and stochastic
components. Historically, simpler deterministic models have often added
stochastic components to explore the impacts related to parameters that
vary over time or space. As modeling efforts have evolved over time, many
deterministic models have added stochastic components to provide a more
realistic picture of the range of possible outcomes.

142 ◾ Modeling and Simulation with MATLAB® and Python

EXERCISES
 1. Create a model of a pair of dice analogous to the coin model where

there is an equal probability for each of the six numbers on each die.
Run the model 100 times and make a graph of the resulting distribu-
tion. Create a second version where the dice are biased so that there
is a 30% greater chance of a six on each die. Compare the two graphs
and describe the results.

 2. Assume that there is a hiker who is lost in the forest and is trying to
find their way out. A hiker without a compass trying to find their
way in the dark can step in any of eight directions (N, NE, E, SE, S,
SW, W, NW) with each step. Studies show that people tend to veer
to the right under such circumstances. Initially, the hiker is facing
north. Suppose at each step, probabilities of going in the indicated
directions are as follows: N—19%, NE—24%, E—17%, SE—10%,
S—2%, SW—3%, W—10%, NW—15%. Notice that these probabilities
add up to 100%. We are going to construct a random walk simulator
that uses the probability and the built-in random number genera-
tor in MATLAB and Python. You know that the random number
generator provides a uniform distribution of numbers over the range
from 0 to 1. This is what will be used in our simulator. For MATLAB
users, download the MATLAB script, hikerwalk.m, and two func-
tion files Hiker.m and animWalk.m. For Python users, download
the file hikerwalk.py. These are an implementation of the model we
have been discussing. The user provides the number of steps, and the
script will return an animation of the hiker’s random walk, the coor-
dinates of the hiker’s final position, and the hiker’s distance from
the origin. Run the hikerwalk script using 100 steps. The resulting
random walk will be animated in a figure window, which is scaled to
contain the entire walk.

Let us conduct a number of random walks to identify a search grid
for the lost hiker. Using the script, conduct 20 random walks. Record the
coordinates of the hiker’s final position and distance from the origin. Plot
those results and use them to recommend a search area for the lost hiker.

Stochastic Models    ◾    143

FURTHER READINGS

Python Software Foundation. Python random.py. https://docs.python.org/3/
library/random.html (accessed December 1, 2016).

SciPy.org. Random sampling. Numpy random. https://docs.scipy.org/doc/
numpy/reference/routines.random.html (accessed December 1, 2016).

REFERENCES

Bareiss, E. H. 1970. Computers and reactor design. In Computers and their
Role in the Physical Sciences, ed. S. Fernbach and A. Taub. pp. 337–384.
New York: Gordon and Breach Science Publishers.

Kalos, M. H. 1970. Monte Carlo methods. In Computers and their Role in the
Physical Sciences, ed. S. Fernbach and A. Taub. pp. 227–235. New York:
Gordon and Breach Science Publishers.

Keane, R. E., R. A. Loehman, and L. M. Holsinger. 2011. The FireBGCv2 landscape
fire and succession model: A research simulation platform for exploring
fire and vegetation dynamics. General Technical Report RMRS-GTR-255.
Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky
Mountain Research Station.

Lecca, P., I. Laurenzi, and J. Ferenc. 2013. Deterministic Versus Stochastic
Modelling in Biochemistry and Systems Biology, Woodhead Publishing
Series in Biomedicine. Jordon Hill, Great Britain: Woodhead Publishing.
ProQuest ebrary. Web. 8 (accessed December 2016).

MathWorks. Random number generation. https://www.mathworks.com/help/
matlab/random-number-generation.html?requestedDomain=www.
mathworks.com (accessed December 1, 2016).

Voinov, A. R., R. Soctanza, M. J. Roelof, T. M. Baoumans, and H. Voinov,
2004. Patuxent landscape model: Integrated modeling of a watershed. In
Landscape Simulation Modeling, ed. R. Costanza and A. Voinov, 197–232.
New York: Springer Verlag.

Wilkinson, D. J. 2011. Stochastic Modelling for Systems Biology, Chapman and
Hall/CRC Mathematical and Computational Biology 2nd ed. London: CRC
Press. ProQuest ebrary. Web. 8 (accessed December 2016).

https://www.mathworks.com/help/matlab/random-number-generation.html?requestedDomain=www.mathworks.com
https://www.mathworks.com/help/matlab/random-number-generation.html?requestedDomain=www.mathworks.com
https://www.mathworks.com/help/matlab/random-number-generation.html?requestedDomain=www.mathworks.com
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
https://docs.scipy.org/doc/numpy/reference/routines.random.html
https://docs.scipy.org/doc/numpy/reference/routines.random.html

http://taylorandfrancis.com

145

C h a p t e r 12

Functions

Although we have been writing scripts to allow us to reexecute
code, programming languages like MATLAB® and Python allow us

to create reusable blocks of code that can accept parameters to execute
against functions. We have already been using built-in functions, such as
various math libraries or bits of administrative code around array and
matrix creation, but we can create our own functions, and use them just
like we have been using the built-in functions.

Functions provide modularity and allow easier code reuse and these
are a very powerful programming tool. Object-oriented programming is
also supported by both MATLAB and Python, and it is a very useful tech-
nique, but it is beyond the scope of this book.

12.1 MATLAB® FUNCTIONS
We will introduce various capabilities of MATLAB’s support for user-
defined functions by building an example function and adding in
 additional complexity. First, we will create a function called stats by
 creating a file called stats.m in our working directory, containing the
following code:

function mean = stats(x)
if ~isvector(x)
 error('Input must be a vector')
end
mean = sum(x)/length(x);
end

146 ◾ Modeling and Simulation with MATLAB® and Python

This function will take the input argument and place it in the variable
“x,” check that x is a vector (and return with an error if it is not), and
then calculate the mean for the vector, store that in the variable mean,
and then return it. It is important to note that MATLAB handles input
variables by something commonly called pass by value, which means that
any modifications to the input variable that occur inside the function will
not be reflected to the variable outside the function. If you saved the file in
your MATLAB path (which includes the current working directory), you
can test this by calling the function in the Command Window, passing
different values and variables to it.

MATLAB functions also support multiple return values. We can modify
the function in stats.m to return the mean and standard deviation of the
input variable.

Now, when you call the function, you can get both the average and stan-
dard deviation returned and stored in local variables, by calling your
function with the following syntax:

[avg, stdev] = stats(input_vector);

MATLAB functions are in scope and callable provided the file name
matches the function name, and the file is located in the MATLAB path.
The path can be modified by clicking Set Path in the environment section
of the Home ribbon, and can be inspected by looking at the path variable.
You can create what are called subfunctions—functions only available and
in-scope inside a particular function—by simply adding additional func-
tion definitions inside your primary function. This can be useful if you
have code you want to reuse multiple times in a function, but that has no
value outside of that function.

MATLAB also supports variable numbers of input and output arguments
by using special variables called varargin and varargout. These can be used

function [mean, sdev] = stats(x)
if ~isvector(x)
 error('Input must be a vector')
end
len = length(x);
mean = sum(x)/len;
sdev = sqrt(sum((x-mean).^2/len));
end

Functions    ◾    147

to create functions that have optional input or output variables. This will
not be commonly used, so we will not talk about it in any more detail here.

Variables defined inside of a function only have scope inside that
function, meaning that when the function exits, the variables cannot be
accessed, and if they have a name that conflicts with a name in the calling
workspace, the variable in the calling workspace is not affected.

12.2 PYTHON FUNCTIONS
Python allows the creation of local functions, which are only in scope
within the currently executed file, and the creation of code libraries via
modules. We will first look at the syntax around functions and then pro-
ceed to demonstrating how to create custom modules.

12.2.1 Functions Syntax in Python

Python functions have very simple syntax. The def keyword is used to
define the function and input variable list, and the return keyword is used
to mark the function end and return any calculated value(s). We can demon-
strate this simplicity with an example that calculates the mean for an input
vector. You can place this code into the Editor window in Spyder to test it.

As we have not introduced modules yet, you will note that we must define
and use the function in the same Python file. It is important to note that
Python handles input variables via a convention commonly called pass
by reference. This means that modifications to the variables passed to a
function made inside the function are visible outside of the function. For
example, if you were to change a value at any position inside “my_array” in
our example function above, that change would be visible in the variable
“my_array” as it was used after the function was called.

import numpy as np

Function definition is here
def stats(my_array):
 "This calculates the mean of the input array"
 mean = np.sum(my_array)/np.size(my_array)
 return mean

Now you can call stats function
m = stats([4,5,6])
print(m)

148 ◾ Modeling and Simulation with MATLAB® and Python

If you call stats() without an input argument, it will generate an error
as “my_array” is a required argument. Python allows us to specify input
variables several ways and call a function a different way to create more
flexibility in input arguments. The alternate way of calling a function is to
use the input variable name in the function call. This lets the interpreter
determine what input variables map to which arguments, and allows call-
ing the function with the input arguments in any order. For example, you
can call stats like this:

stats(my_array=[2,3,4])

You can also provide default values for any or all input arguments, effec-
tively turning those arguments into optional values. If we wanted to spec-
ify a default value for my_array in the stats() function, we could modify
the function definition like this:

def stats(my_array = [1, 2, 3]):

Now, when we call the stats() function, if we did not supply an argument
for my_array, the Python interpreter will use the array [1,2,3] instead of an
error stopping execution of our program.

Python also supports variable-length argument lists. These additional
arguments are nonnamed, cannot have default values, and are placed in a
tuple, a special type of list in Python that you can iterate over.

Variables inside a function in Python have local scope, which means
that they can only be accessed inside the function, and have no value out-
side of the function. If a variable name inside a function is the same as a
variable that exists outside the function, the variable outside the function
is not impacted by anything that happens inside the function.

12.2.2 Python Modules

Code reusability is one of the biggest advantages of functions, and if we
could only use functions in the file they are defined in, our code would be
less reusable and become more difficult to maintain. Thankfully, Python
allows us to create our own user-defined modules to package up our cus-
tom functions to make them easier to reuse.

Creating a module is very simple. If we want to package up our stats()
function into a module called mymodule, we would place the function
definition (along with any other functions we wish to put into mymodule)

Functions    ◾    149

inside mymodule.py. At this point, we can import the module and use the
functions defined in it just as we have imported other modules such as
NumPy.

When the Python interpreter attempts to import modules, it first looks in
the local working directory and then looks in the environment variable
PYTHONPATH for a list of directories to search.

EXERCISES
 1. Write a function that calculates the factorial for the input value.

 2. Write a function that calculates the factorial for each value of an
input vector and that returns a vector of results.

 3. Write a function that takes an input matrix and calculates the average
value of each row (or—if instructed by an optional argument—the
average value of each column) and that returns a vector containing
the results.

 4. Package your functions from these exercises into a custom Python
module.

import mymodule
a = mymodule.stats([1,2,3,4,5])

http://taylorandfrancis.com

151

C h a p t e r 13

Verification, Validation,
and Errors

13.1 INTRODUCTION
Knowing whether or not a model is a reasonable representation of the
 system being studied is a critical question for all modeling efforts. This
turns out to be a very difficult question to answer. Since every model is a
simplification of reality, all models will deviate from 100% accuracy when
compared with available experimental data. At the same time, experi-
mental data may contain errors, be available for only limited cases, or be
 lacking in its scope in other ways, making it impossible to fully prove that
a model is correct.

The modeling process itself is dynamic. We often start out with a very
simple representation of a system. The results of that effort are then evalu-
ated with respect to the available knowledge of the system behavior and
the insights provided with the initial model. With this analysis in mind, we
often change the model design by adding additional components, altering
the mathematical representation, and changing the computer algorithms
used. We then need to judge whether the newer versions of the model are
better representations of the system. All such efforts are constrained by
the resources that we have in place to undertake the modeling effort—the
scientists, programmers, data, and computational resources required to
make the improvements.

152 ◾ Modeling and Simulation with MATLAB® and Python

Judging how well we are doing with our modeling effort requires a
framework that we can use to judge our results. The processes that have
been developed to make those judgments are called verification and
validation. Verification is the process used to confirm that a model is cor-
rectly implemented with respect to the conceptual model it is based on.
Validation is a check of the representation of the model to reality. Several
professional organizations have sanctioned their own definitions of these
terms and the processes that are used to achieve their goals. We will discuss
those later in this chapter.

Section 13.2 provides a review of the sources of errors and how we
 measure them. We then review the definitions and scope of the verifica-
tion and validation process in more depth. The methods used to undertake
these processes are then summarized followed by a few exercises.

13.2 ERRORS
There are many possible sources of error in scientific research and model-
ing. The data that are used to support the development of models may have
errors. Those errors can be associated with the accuracy of the instruments
that are used to measure what is happening. Errors may also be made in the
formulation of a model by making incorrect assumptions about the system
behavior, assumptions that oversimplify the system, decisions on the criti-
cal components of the model, and the variability of model parameters.

The implementation of a model may also produce errors. Those can
include programming and logical errors that incorrectly implement the
model representation, calculation errors associated with the representa-
tion of numbers by the computer, and errors in the algorithms used to
approximate the mathematical basis of the model.

Identifying and separating out the many sources of errors is a chal-
lenge. The key to approaching this problem is a deeper understanding of
the sources of errors and the techniques that can be used to minimize
their impact on the model results.

13.2.1 Absolute and Relative Error

For instances where we know the real or experimental value of a quantity,
we can calculate the difference from the modeled value in two ways.
Of course, this assumes that there are no measurement errors associated
with the experimental value we are using for comparison.

The absolute error is the absolute value difference between the model
result value X and the assumed correct value of X:

Verification, Validation, and Errors    ◾    153

 X X− (13.1)

The relative error is the absolute error divided by the correct value, assum-
ing the correct value is not zero. This can be calculated as a proportion or
a percentage:

 Relative error
X X

X
= −() (13.2)

or

 Relative error
X X

X
= − ∗()

100% (13.3)

We will use these measures to illustrate the nature of computational errors
that occur in modeling. Whether a particular level of error is acceptable
depends upon the objective of our model and the risks.

13.2.2 Precision

Decimal numbers in a computer are represented as binary floating-point
numbers. Those numbers are represented in the computer using scientific
notation that includes a sign, a mantissa or significand representing the
numbers and an exponent, for example, +8.94357 × 102 to represent 894.357.
The number of significant digits in the mantissa is limited by the amount of
memory used in the computer to store that number. Numbers that are rep-
resented in 32 bits are called single precision numbers. They can have six to
nine decimal digits. The range of numbers that can be represented in single
precision is from 1038 to 10−38. Double precision numbers can store up to
15–17 decimal digits and represent numbers from 10308 to 10−308.

13.2.3 Truncation and Rounding Error

The default floating-point representation in MATLAB® and Python is
double precision. For the models we are running for this course, there are
no constrictions on available memory so everything can easily be done
in double precision. However, it is important to understand the potential
errors that arise from the differences in precision (Bush, 1996).

The first possible problem is called truncation error. This will most
frequently occur when using very large or very small numbers. With fewer
digits in the mantissa, values are truncated and thus take a slightly differ-
ent value. Even if this value is small, it may accumulate if it is used in a

154 ◾ Modeling and Simulation with MATLAB® and Python

loop where it adds an incremental error on each iteration. When we make
a division that results in an infinite decimal expansion, even the double
precision number will truncate the value.

The second related problem is rounding error. This may occur when we
add a very large and very small number. Given the conversion of the deci-
mal numbers to binary, the small number may be ignored in the resulting
total. Rounding also occurs when using the default formatting of many
programming languages. The default may present a decimal number
rounded to four or five significant digits, rounding off the number based
on the next significant digit in the sequence.

To illustrate these problems, download and run the program
truncation.m or truncation.py. The program codes are shown as follows:

TRUNCATION CODES

MATLAB Code
%Truncation example
clear all;
format long
x=3.56e6;
y=2.2800e6;
a=single(x);
b=single(y);
z=x*y;
c=a*b;
fprintf('\nz = %2.8e c= %2.8e',z, c)
format short
z
c

Python Code
-*- coding: utf-8 -*-
"""
Created on Thu Dec 15 13:52:27 2016
Truncation example
"""
import numpy as np
x=3.56e15
y=2.2800e22
a=np.float32(x)
b=np.float32(y)
z=x*y
c=a*b
print ("z=: %2.8e, c=: %2.8e" % (z, c))
print (z, c)

Verification, Validation, and Errors    ◾    155

In these codes, two very large numbers are input as x and y. A second
version is created in single precision as variables a and b. Both pairs are
then multiplied. The result is shown in a format, which shows the full value
of each. Although the numbers are close, the single precision number is
slightly smaller. In both cases, the program writes out both numbers in a
more standard decimal format. When this is done, rounding occurs and
both values appear to be the same.

The conversion between decimal and floating-point numbers often
results in these errors. This is an important tendency to keep in mind
when writing a program using floating-point arithmetic. It implies that we
should never test for the equality of two floating-point numbers because
there is high probability that they will be close but not equal.

One way of minimizing errors associated with rounding and trunca-
tion is to perform the calculations with very small numbers first and then
do the calculations with larger numbers.

13.2.4 Violating Numeric Associative and Distributive Properties

Computer arithmetic can violate the associative properties of addition,
subtraction, and multiplication due to rounding and truncation errors
and the resulting representation of decimal numbers in binary formats.
Normally, we would expect the following to be true:

 () () ()a b c a b c and ab c a(bc)+ + = + + = (13.4)

Rounding and truncation errors may produce errors that result in slightly
different results when the order of computations is changed. This will be
illustrated by one of the exercises.

13.2.5 Algorithms and Errors

Numerical errors have been extensively evaluated as computer simula-
tion has become such a large part of science and engineering practice.
As various mathematical representations have been used in simulations,
algorithms have been designed and tested to provide the most efficient
computational requirement and the procedure used on the computer
to perform a calculation. Those algorithms have become parts of
 scientific libraries that can be inserted into codes as function calls.
This avoids the need to write a program from scratch that performs
the same calculation and avoids the errors that might arise from such
a code.

156 ◾ Modeling and Simulation with MATLAB® and Python

In MATLAB, many of these algorithms are available as part of the
various toolboxes that come with the program. In Python, they are parts
of the mathematic and scientific libraries. In both cases, there are special-
ized libraries that focus on particular fields of study for example tools for
bioinformatics, astrophysics, image processing, and statistical analysis
(see Mathworks, 2016b; Wikipedia, 2016). Tracking the available modules
and packages in Python is a challenge as new packages and routines are
constantly under development by the user community. As a rule, those
libraries should be consulted before writing new code to represent a
particular system or mathematical operation.

13.2.5.1 Euler’s Method
We will use our approach to solving an ordinary differential equa-
tion to illustrate how the algorithm being used can impact our com-
putational results. For several of our previous assignments, we have
solved an ordinary differential equation by changing it to a differ-
ence equation and calculating incremental changes in the quantity
with respect to time. Recall the models for unconstrained population
growth and the velocity of a ball tossed off a bridge. Our estimate for
the value at time t was based on its value at time t−1 plus the change
that occurred in that period of time. That algorithm is more formally
known as Euler’s method after the eighteenth century Swiss mathematician
Leonhard Euler.

The method can be applied to discover the shape of the curve described
by an ordinary differential equation given the starting point of the curve
and solving for the slope of the tangent line to the curve at each subse-
quent point. More formally the equation is

 ′ =y (t) f(t,y(t)) (13.5)

where:
y′(t) is the estimate of the value of y given the time dependent function

f(t,y(t))
y(t0) = y0 is a known origin

To implement this algorithm, we choose a step size h and then step through
the calculation:

 y y hf(t y)n n n n+ = +1 (13.6)

Verification, Validation, and Errors    ◾    157

Let us illustrate the results using an exponential population growth exam-
ple. Let us say we have a starting population of 50 and a growth rate of 0.05
annually. Our equation then is

 d

d
rPP

t

= (13.7)

where:
P0 = 50
r = 0.05

The analytical solution to this equation is the exponential growth equation:

 P e t= 50 0 05. (13.8)

Figure 13.1 shows the result of the simulation after 100 iterations using
both the Euler method and the analytical solution with the time step set
to 1. The figure shows that the Euler method creates a pretty accurate
approximation until iteration 50 when it starts to diverge from the ana-
lytical results. By the time it reaches the 100th iteration, the difference
is 797 or 12.7% error. We can reduce the error by using a smaller time
step of 0.25 at the cost of four times the computational time. When this is
done, the error is reduced to about 3.8%. For a small program such as this
one, that computational burden is not significant but for any large code,

500 10 20 30 40 7060 80 90 100
Iterations

0

1000

2000

3000

4000

5000

6000

7000

8000
Po

pu
la

tio
n

Exponential growth using Euler and analytic solutions

Euler
Analytic

X: 100
Y: 6262

X: 100
Y: 7059

FIGURE 13.1 Graph of Euler versus analytic solution.

158 ◾ Modeling and Simulation with MATLAB® and Python

the trade-off between accuracy and computational requirements can
make a huge difference in the utility and feasibility of the code.

13.2.5.2 Runge–Kutta Method
Carl Runge and Martin Kutta were both German mathematicians who
derived a four-step method for solving ordinary differential equations around
1900, well before the algorithm was implemented in computer code. The
method has thus been named Runge–Kutta 4 or RK4. Mathworks (2016a)
provides a nice set of overview videos on this and other ordinary differ-
ential equation (ODE) solution algorithms with examples from MATLAB.

Given the same basic problem as defined by Equation 12.5, the algo-
rithm goes through four steps to arrive at this solution:

 y y
h

k k k kn+1 n= + + + +()
6

2 21 2 3 4 (13.9)

For n = (0, 1, 2, 3, … no. steps).

 k f t yn n1 = (), (13.10)

where k1 is the slope at the beginning of the interval using Euler’s method.
In the second step, a second increment is calculated based on the slope

of the midpoint of the interval:

 k f t
h

y
h

kn n2 1
2 2

= + +





, (13.11)

The third increment k3 is also based on the midpoint but uses the value
of k2:

 k f t
h

y
h

kn n3 2
2 2

= + +





, (13.12)

Then the fourth increment is based on the slope at the end of the interval
using y + hk3:

 k f (t h y hk)n n4 3= + +, (13.13)

The final estimate as shown in Equation 13.9 is a weighted average
of the four coefficients with the middle two coefficients given greater
weight. For our simple example, you may undertake the exercise that

Verification, Validation, and Errors    ◾    159

shows that the RK4 solution to the equation matches the values of the
analytic solution after 100 iterations.

13.2.6 ODE Modules in MATLAB® and Python

There are several ODE modules in MATLAB and Python that can be
used to solve ordinary differential equations of different types. These are
shown in Table 13.1. Both of the programming environments have mul-
tiple solvers that can be applied to ODEs with different characteristics. For
the problems involved in this book, the first example in each—ode45 in
MATLAB and scipy.integrate.odeint—should suffice for the problems and
project we undertake.

13.3 VERIFICATION AND VALIDATION
Given the previous discussion of the many sources of errors and the
 difficulty in measuring those errors, it should be no surprise that model
verification and validation (V&V) is a challenge. In this section, we provide
some historical background to the process of V&V and the formal frame-
works that have been established by several professional organizations. We
then go on to provide some practical guidelines for conducting V&V that
you can immediately implement.

Choose the most appropriate algorithm for calculating any specific math-
ematical function. Look up the function in the programming environment
help documents to find the choices of algorithm for any specific problem.

TABLE 13.1 Selected ODE Solvers in MATLAB® and Python

Function Description

MATLAB Functionsa

ode45 Listed as the first solver you should try
ode23 Listed as more efficient at problems with low tolerances
ode15s Used when ode45 fails and on problems with stringent error

tolerances or when solving differential algebraic equations

Python Functions
scipy.integrate.odeint Integrate a system of ordinary differential equations
scipy.integrate.ode A generic interface class to numeric integrators
scikits.odes 2.2.1 Package that installs several other ODE solvers for Python
a Consult the MATLAB and Python documentation for other options and for solver syntax.

160 ◾ Modeling and Simulation with MATLAB® and Python

13.3.1 History and Definitions

The Society for Simulation was one of the first organizations to create a
set of formal terms relating to V&V (Schlesinger, 1979). They divided the
modeling process into three major elements—reality, a conceptual model,
and a computerized model as illustrated in Figure 13.2. The conceptual
model is the abstraction of reality that is used as the basis to create a com-
puterized model including the governing relationships and equations that
are attempting to describe reality. The conceptual model also defines a
domain of intended application, which they define as the “prescribed con-
ditions for which the conceptual model is intended to match reality.”

This leads to the computerized model through a programming effort.
They then defined model verification as “substantiation that a computerized
model represents a conceptual model within specified limits of accuracy.”
As we will see this early definition has carried forward to some of the
current standard frameworks for verification.

Going on in the modeling process, the computerized model is compared
to reality by using computer simulations to try to describe that reality.
Their definition of model validation then becomes “substantiation that a
computerized model within its domain of applicability possesses a satis-
factory range of accuracy consistent with the intended application of the
model.” How we judge whether a model sufficiently accurate depends on
its intended use. For example, we might have a model of a rocket launch
that places an object in orbit around the earth. If our purpose is to put it

Model
qualification

Analysis

Computer
simulation

Programming

Model
validation

Model
verification

Reality

Conceptual
model

Computerized
model

FIGURE 13.2 Development of concepts and terminology for modeling and
simulation.

Verification, Validation, and Errors    ◾    161

into a stable orbit at a particular altitude within a few hundred meters and
we can validate that our model will do that based on previous launches,
the model is valid. However, if that object must rendezvous with the space
station, the required level of accuracy is within a few meters and our
more general model would not be valid. Similarly, we might undertake a
regional population forecast to provide general insights about the growth
of the region and the possible impacts on the economic base and social
change. However, if we are going to invest in a new water system including
water lines and a water treatment facility, investing millions of dollars in
facilities, we need a much more accurate and spatially explicit model of the
growth so that we know where and when to start building new facilities.

These early definitions of V&V helped to guide several other profes-
sional organizations to create standards for the process. Oberkampf and
Roy (2010) describe the history of V&V with a number of examples of
frameworks adopted by various professional groups. A set of definitions
created by the Department of Defense community in 1994 was very simi-
lar in scope to that of the Society for Simulation. That definition has been
used with only minor changes to the present day and is shown as follows:

The American Society of Mechanical Engineers has added several explicit
steps to the verification process (ASME, 2006). In particular, they
specify two verification steps—code verification and calculation verifica-
tion. Code verification is defined as “the process of determining that the
numerical algorithms are correctly implemented in the computer code and
of identifying errors in the software.” Calculation verification examines
the correctness of the input data, the numerical accuracy of the solution,
and an evaluation of the correctness of the output for the simulation
runs. The correctness of the input data involves an assessment of possible
human error in using the wrong datasets or parameters for model runs.

Verification: The process of determining that a model implementation
accurately represents the developer’s conceptual description of the model.

Validation: The process of determining the degree to which a model or
simulation and its associated data are an accurate representation of the real
world from the perspective of the intended uses of the model.

Source: Department of Defense, DoD modeling and simulation (M&S)
verification, validation, and accreditation (VV&A) Department of Defense
Instruction Number 5000.62. https://www.msco.mil/vva.html, 2009.

https://www.msco.mil/vva.html

162 ◾ Modeling and Simulation with MATLAB® and Python

This is one of the most difficult types of errors to find, especially with
large-scale models with many inputs. The numerical accuracy in this case
is associated with the algorithms used to translate the mathematics into
the computer code and not the accuracy with respect to the model vali-
dation. The checking of the output is aimed at evaluating the quantity
and nature of the output distributions to ascertain that they produce the
expected range and distribution of values. For example, an anomaly in the
shape of an output curve may indicate that the code is incorrectly calculat-
ing a subset of the data. Values that exceed the physical limits of a variable
or that are extremely large or extremely small may indicate that the code
is misrepresenting the system in some way.

The definition of validation focuses on comparisons of the model results
with the real system it represents relative to the intended use of the model.
It is important to note that the level of accuracy associated with valida-
tion is not absolute but is dependent upon the use for which the model
was developed. Regardless, validation can involve both quantitative and
qualitative assessments of the models behavior with respect to a real sys-
tem. The nature of those measurements depend upon the availability and
quality of data relating to the modeled system. Where possible it should
involve an assessment of validity of the parameters used as inputs to the
model as well as comparisons with one or more of the outputs.

13.3.2 Verification Guidelines

There are a number of formal frameworks that can be applied to complete
the verification of a model. Those include standard software engineer-
ing best practices from the computer science community, code verifica-
tion criteria from the scientific computing community, and specific tests
associated with different classes of codes such as finite element methods.
Those detailed approaches are summarized by Oberkampf and Roy (2010)
and Murray-Smith (2015) and are beyond the scope of our introduction
to modeling. We have extracted a subset of these approaches to provide
a checklist of practical steps that should be taken to verify even simple
models. Those guidelines are shown in Table 13.2.

Since the development of a simulation model is dynamic, the guide-
lines in Table 13.2 should be followed as each section of code is developed.
This approach will avoid many problems of trying to find a bug in the
much larger completed code. As each code segment is developed, inspect
and debug that segment to make sure that the proper data and calcula-
tions are passed to the next code segment. Once the code is completed,

Verification, Validation, and Errors    ◾    163

make multiple runs and examine the final output to ensure that they are
producing reasonable and expected values. It may not be possible in all
cases to fully know what the expected range of output values may be.
However, there should always be some prior work or data that inspired the
creation of the model for which some reference values are available.

By following these guidelines, you should be able to verify that your
code correctly implements your conceptual model. You should also be
able to explicitly define the circumstances the model can be applied and
have some initial ideas of the accuracy of the model that can be tested
when validating the model.

13.3.3 Validation Guidelines

Model validation is often a much more difficult challenge. For determin-
istic models where there are reliable experimental results, the validation
may be relatively straightforward. The experimental results can be thought
of as the real world and compared against the model results quantitatively.
However, even in that case, we can only show that the model is right
within the range and controlled conditions of the experiment. It could

TABLE 13.2 Checklist of Verification Steps

Action Description

Choice of algorithm Ensure that the algorithms chosen for the model
are the most appropriate for the circumstance

Software inspection Careful review of each program module to ensure
that the algorithms are properly programmed,
parameters are properly input and used, and the
code output is correct

Debugging step through Use the debugger to step through major portions of
the code to ensure that intermediate calculations
are correct

Tests with range of inputs Test the model with an appropriate range of inputs
to ensure the expected outputs are generated

Check order of calculations When working with extreme values, check the order
of calculations to minimize the truncation error

Compare results to other models Compare the results to those in the literature or
to simple models to get a sense of the expected
outcomes

Check output values For each test run, make sure the resulting outputs
are in the expected range

Empirical model limits For empirical model, ensure that the forecasts are
limited to the range of the input data

164 ◾ Modeling and Simulation with MATLAB® and Python

well be that the behavior of the system will change in an unexpected way
under conditions not tested in experiments.

For models dealing with open systems, the validation process is much
more difficult. An air pollution model, for example, may take into account
a wide range of atmospheric conditions to arrive at an estimate of the dis-
tribution of a particular pollutant within an urban area. Even if there is
a long-term monitoring effort for that pollutant in the urban area, those
monitors are at discrete locations that cannot possibly reflect the full range
of environmental conditions (or even the range of conditions embedded
in the model). At the same time, there is probably not complete measure-
ment of all of the related causal factors at the same locations and same
scale as those represented by the monitoring network or the model’s spatial
resolution. In that case, our only hope is to make a substantial number of
calculations to create a database of pollutant levels that are comparable to
the spatial and time scales of the air pollution model. Given those limita-
tions, we may only be able to say that on average, the model appears to be
a reasonable representation of the real world.

Models such as the air pollution example mentioned earlier are also
stochastic. The historical record of weather events represented by a few
airport and local weather stations is used to create a probability distribu-
tion of the likelihood of various combinations of wind speed, air mass
stability, temperatures, and precipitation events that will impact the dis-
persion of an air pollutant. We then apply that probability distribution in
our model, assuming that the future conditions will mimic those in the
past. This places another constraint on what we can say about the validity
of such models.

Nonetheless, it is possible to use the available information to provide
some insights into the validity of most models. There are both statistical
and graphical approaches to validation. In Sections 13.3.3.1 and 13.3.3.2,
we provide a few examples to illustrate these approaches.

13.3.3.1 Quantitative and Statistical Validation Measures
For situations in which there are reliable experimental or observational
data, the simplest validation test can be the calculation of absolute and
relative error for each of the available data points. The absolute error will
be in the units of the measured quantities and by itself may be difficult
to interpret. The relative errors are in percentages, which may be a more
useful statistic.

Verification, Validation, and Errors    ◾    165

The relative errors by themselves will not provide an overall measure of
the model accuracy. Averaging those errors is not a good approach since
negative and positive errors will cancel each other out. Taking the abso-
lute value of the errors and then calculating a mean is one approach to
resolve this problem. Another statistic that has been used to provide an
overall measure is called the root mean square error. This provides a single
summary of the errors across all of the sample points by squaring the dif-
ferences and taking the square root of the resulting average as shown in
Equation 13.14:

 RMSE
n

y y
i

n

i i= −()
=

∑ ˆ1

1

2 (13.14)

where:
yi is the observed values
ŷi is the simulated values
n is the number of observations

For stochastic models that produce multiple output values that can be
summarized into either spatial or time based subsets, comparisons can
be made between observed and simulated mean values for each subset.
Going back to our air pollution model, we could make multiple runs to
characterize the possible outcomes during periods of air temperature
inversions when air pollutants are held near the ground. Those simulated
averages could be compared with real data from days where similar condi-
tions existed. In addition, the distributions around those means could be
compared either by calculating additional descriptive statistics such as the
standard deviation and the skewness or plotted to visualize their relation-
ships. There are also statistical tests of significance such as the difference
of means test that can be applied to those distributions to test whether the
observed and simulated values are significantly different.

We can also use regression analysis to provide a test of the accuracy
of our simulation. In that case, we would make the observed values our
dependent variable and the simulated results our explanatory variable.
The resulting coefficient of determination will then provide a measure of
the amount of variance in the observed data explained by the simulation
model. The closer the value is to 1.0, the better our model.

166 ◾ Modeling and Simulation with MATLAB® and Python

There are many other possible statistics that have been used in model
validation. A complete review of all of those methods is beyond the scope
of the current chapter. Hopefully, the examples here provide a solid base
in understanding the process of model validation.

13.3.3.2 Graphical Methods
Quantitative measures for model validation are rarely employed without
also examining graphical comparisons of observations and simulation
results. There are several reasons for this. First, one or a few statistical
measures may not fully represent the distribution of the errors in the
model. A graph will show whether the errors are consistent across the
observations or whether they are concentrated in a particular subset of
those observations. Second and just as important, the graph will help to
identify those areas or times where the model errors are greatest. That
information can help to inform the modeling process and to identifying
whether the errors are the result of the computation or algorithms, are
related to the underlying assumptions of the model, and/or are because
of an erroneous conceptual model that formed the basis of the modeling
effort.

Several types of graphs can be used to visualize the model validity.
Of course, the simple two dimensional plots we have been using are one
of those options. For phenomena that are spatially distributed, a three
dimensional graph may be more useful. Aside from graphing model results
versus observations, one can also graph the deviations from various statis-
tical analyses. For example, when a regression model is used, the residuals
or unexplained variance can be plotted to identify whether the errors occur
in some pattern. The residuals can also be used to identify exceptional
cases. Those cases can be examined in more detail in an attempt to track
down the causes of the deviation.

Finally, it is important to remember that the validation is being made
with respect to the purpose of the model. The acceptability of the error
will vary depending on that purpose. In addition, the model may still pro-
vide important insights into the behavior of the system that can inform
future model improvements.

EXERCISES
 1. Download and run the glitches.m or glitches.py program file from

the book website. Run the code and observe what happens when
the order of operations change. Describe the results. If you were

Verification, Validation, and Errors    ◾    167

doing one of these calculations in a program and wanted the pro-
gram to branch when the result of the calculation is zero, how would
you compensate for these truncation errors? Add that code to the
program.

 2. Write a program to simulate the exponential growth model described
earlier in this chapter. The initial population is 50 and the growth
rate is 0.05. Create the model using the Euler method with a time
increment of 1 and 100 iterations. Calculate the analytical solution
to the equation in the same program. Graph both distributions and
calculate the root mean squared error for the simulation.

 3. Use one of the ode solvers in MATLAB or Python to generate a solu-
tion to the exponential growth problem above. Compare that result
to the analytical solution and calculate the root mean squared error
for that comparison.

 4. You are charged with validating a model of the level of dissolved oxy-
gen (DO) in a river. The oxygen level must remain about five parts
per million (ppm) in order to maintain a healthy environment. You
know that the level of DO can physically go from 0.0 to 14.6 ppm. The
model simulates the impact of a sewage treatment plant discharge. As
it flows downstream, the organic waste from the plant lowers the DO
level as bacteria use oxygen to decompose the waste. Download the
file DO_verify from the book website. The file has a series of model
runs using different assumptions about the amount of organic waste
being released and the efficiency of the environment in adding oxy-
gen back to the stream. Verify the model using these data. Describe
any model errors you can find and indicate what you would look for
and/or add to the model to fix those problems.

REFERENCES

American Society of Mechanical Engineers. 2006. Guide for Verification and
Validation in Computational Solid Mechanics. ASME Standard V&V 10.
New York: American Society of Mechanical Engineers.

Bush, B. M. 1996. The perils of floating point. http://www.lahey.com/float.htm
(accessed December 15, 2016).

Department of Defense. 2009. DoD modeling and simulation (M&S) verification,
validation, and accreditation (VV&A). Department of Defense Instruction
Number 5000.62. https://www.msco.mil/vva.html (accessed December 15, 2016).

http://www.lahey.com/float.htm
https://www.msco.mil/vva.html

168 ◾ Modeling and Simulation with MATLAB® and Python

Mathworks. 2016a. Solving ODEs in MATLAB. https://www.mathworks.com/
videos/series/solving-odes-in-matlab-117658.html (accessed December 15,
2016).

Mathworks. 2016b. MathWorks products and services. https://www.mathworks.
com/products.html?s_tid=gn_ps (accessed December 15, 2016).

Murray-Smith, D. J. 2015. Testing and Validation of Computer Simulation Models.
Cham, Switzerland: Springer International.

Oberkampf, W. L. and C. J. Roy. 2010. Verification and Validation in Scientific
Computing. Cambridge, Great Britain: Cambridge University Press. ProQuest
ebrary. Web. 15 (accessed December 2016).

Schlesinger, S. 1979. Terminology for model credibility. Simulation 32 (3): 103–104.
doi:10.1177/003754977903200304.

Wikipedia. 2016. List of Python Software. https://en.wikipedia.org/wiki/List_of_
Python_software#Scientific_packages (accessed December 15, 2016).

https://www.mathworks.com/videos/series/solving-odes-in-matlab-117658.html
https://www.mathworks.com/videos/series/solving-odes-in-matlab-117658.html
https://www.mathworks.com/products.html?s_tid=gn_ps
https://www.mathworks.com/products.html?s_tid=gn_ps
https://en.wikipedia.org/wiki/List_of_Python_software#Scientific_packages
https://en.wikipedia.org/wiki/List_of_Python_software#Scientific_packages

169

C h a p t e r 14

Capstone Projects

14.1 INTRODUCTION
The purpose of this chapter is to present a number of capstone projects that
demonstrate both the modeling and programming skills that have been
acquired throughout this book. Typically, the projects should be under-
taken over a period of about four weeks while students work through the
remainder of the modeling and programming content. The projects can
be completed by groups of students or by individuals with the expected
outcomes adjusted according to the number of students completing the
work. Each projects require some research about the system being mod-
eled, the programming of a basic model, the addition of one or more
additional model components to relax some of the initial assumptions,
model runs to answer one or more research questions, model verifica-
tion, model validation where possible, and presentation of the results
orally and in writing.

We provide an introduction to each of the example projects distributed
with the publication of this book in the following sections. Additional
project materials are available on the book website. Additional project
may be added to the website over time. For each project we present:

 1. An introduction to the underlying system and the related math-
ematical equations.

 2. A set of questions to be addressed through the implementation and
testing of the model.

170 ◾ Modeling and Simulation with MATLAB® and Python

 3. A set of optional additions to the basic model.

 4. An optional starting code outlining the major programming steps to
implement the basic model.

 5. A set of references that describe the system and models of that system
that have been previously implemented.

 6. Where possible, links to sources of data that can be used to validate
the model.

The optional starting code is available to instructors so each instructor can
decide if their students should start the project from scratch and require
some additional guidance. Whether or not that code is presented also
depends on the amount of time granted to complete the project as well
as the nature of project and its relationship to the exercises undertaken as
homework earlier in the course.

14.2 PROJECT GOALS
The objective of the projects is to build and test a model of one of the
candidate systems and use that model to derive insights into the system
behavior with respect to a set of proposed problems. Individuals or teams
undertaking the projects will need to complete a number of activities:

 1. Review and understand the underlying system concepts and the
mathematical representations of the system that are given in the
provided materials and references.

 2. Create a basic starting code or complete the given starting code to
complete the model as presented.

 3. Verify that the code is providing the correct results within the bounds
of the system being modeled.

 4. Use the code to test the model sensitivity to selected parameters, to
forecast the results through a range of prescribed conditions, and to
assemble the appropriate tabular and graphics information to create
a summary report.

 5. Enhance the model by relaxing one or more of the modeling
assumptions by adding additional components to the model, con-
ducting the necessary runs.

Capstone Projects    ◾    171

 6. Optionally add interactive components to the program that allows
data input from the keyboard or a file, writes outputs to files, and/or
automatically summarizes or compares multiple runs.

 7. Validate the model against real data or the literature where possible.

 8. Prepare a summary report and presentation describing all of the
testing, verification, validation, and model outcomes.

14.3 PROJECT DESCRIPTIONS
Each of the projects is introduced in this section. The auxiliary materials
are available in the Projects folder on the book website. The optional start-
ing codes for MATLAB® and Python are available on the instructor’s
website.

14.3.1 Drug Dosage Model

The first project is a model of drug dosage and its absorption into the blood-
stream. A concept map of the model is shown in Figure 14.1. Medicine
is ingested as oral doses one or more times per day with each pill contain-
ing a particular dosage. Those doses are given at discrete times. Assuming
a 16-hour day during which medicine could be taken, the doses can be
assumed to be distributed evenly over that time period.

Once a dose is taken, that amount is resident in the intestines. For each
increment of time, part of that dose is absorbed into the bloodstream at
an adsorption rate, adds to the amount in the blood plasma, and reduces
the amount in the intestines. Once absorbed, the medicine also leaves the
body at each increment of time depending on the half-life of the drug and
the excretion rate.

Drug intake

Doses per day

Medicine in intestines

Absorption rate constant

Dosage per day

Plasma concentration

Drug level in plasma Excretion

Half-life

Dosage

Excretion rate

Excretion rate
constant

Blood volume

Absorption rate

FIGURE 14.1 Concept map of drug dosage model.

172 ◾ Modeling and Simulation with MATLAB® and Python

At any of the time periods, the plasma concentration is a function of the
plasma level divided by the blood volume of the person who took the drug.
For this modeling effort, we assume that there is a concentration level goal
that must be reached for the drug to have the intended benefit. In addition,
too high concentration produces a toxic effect, which creates unwanted
side effects. The goal of the model is to find the dosage and timing of doses
to achieve the medicinal level and stay below the toxic level of concentra-
tion in the blood plasma. There are also some optional explorations and
model extensions that can be completed as part of the exercise.

This simple model of drug dosage is called a one-compartment model
of drug dosage. The model assumes that the drug achieves instantaneous
distribution throughout the body. It also assumes that the level of the drug
in the blood plasma is the same of that in the organs and tissues that the
drug is used to treat.

Use the model to vary the doses and dosage per day such that the overall
goal is obtained. You should document your code and provide graphic and
tabular outcomes to show how you arrived at the appropriate levels
and timing of the dosage. These should be contained in a written report
and prepared for presentation along with any of the additional options
you added to your model from the list of possible additions given in the
detailed assignment description.

14.3.2 Malaria Model

Malaria is one of the most devastating diseases, and it is a leading cause of
death in tropical regions of the world. Mathematical models of the disease
help public health professionals to have a better understanding of disease
transmission and to identify effective measures for the prevention and
elimination of the disease.

Malaria is a vector-borne disease spread through the bite of a
female Anopheles mosquito. Thus a model of the disease requires two
 submodels—one representing the life cycle of the mosquitoes that spread
the disease and one representing the cycle of the disease in humans.
Figure 14.2 is a diagram from the Centers for Disease Control and
Prevention that illustrates both of the cycles.

An infected mosquito injects parasites called sporozoites into the
bloodstream. They hide in the liver for a period of one to two weeks where
they divide asexually and mature into merozoites. Those are released into
the bloodstream and infect red blood cells. Some of the parasites mature
into gametocytes, which can be ingested by a mosquito to pass the disease

Capstone Projects    ◾    173

back to that disease vector. The male and female gametocytes merge
sexually to produce sporozoites that are transmitted back to humans in
the salivary glands of the mosquito.

This project will implement a simplified model of the malaria disease
cycle applied to a village in a region with malaria. Assuming that there is
no latent period for infection, the population of humans in the village can
be divided into three groups: healthy villagers, sick villagers, and immune
villagers. For any given time, the change in the number of healthy vil-
lagers depends on the numbers of births, deaths, infected, and recovered
villagers. Change in the number of sick villagers depends on the number
of infected villagers, recovered villagers, villagers who gained immunity,
and deaths of sick villagers. Change in immune villagers depends on the
number of villagers who gained immunity and the number of deaths in
immune villagers.

The life cycle of the malaria parasite in mosquitos is little simpler
since infected mosquitos end with death, with no recovery or immunity.

= Infective stage
= Diagnostic stage

Oocyst

Ruptured
oocyst

Liver cell

Mosquito takes a
blood meal

(injects sporozoites)Release of
sporozoites

Sporogonic cycle

Macrogametocyte

Exflagellated
microgametocyte

Microgamete entering
macrogamete

Mosquito takes
a blood meal

(ingests gametocytes)

Ookinete

Mosquito stages

Human blood stages

Human liver stages
Infected
liver cell

Exoerythrocytic cyle

Schizont

Immature
trophozoite
(ring stage)

Mature
trophozoite

Gametocytes
Gametocytes

P. falciparum

P. vivax
P. ovale
P. malariae

Ruptured
schizont

Schizont

Erythrocytic cycle

Ruptured schizont

d

11

10

9

12 1

i

c

8

i A

2

34

5

B

7
7

6

d
d

d

d

i

FIGURE 14.2 The malaria infection cycles. (From https://www.cdc.gov/malaria/
about/biology/.)

https://www.cdc.gov/malaria/about/biology/
https://www.cdc.gov/malaria/about/biology/

174 ◾ Modeling and Simulation with MATLAB® and Python

For any time period, changes in the number of healthy mosquitoes depend
on the numbers of births, deaths, and infected mosquitoes, and change
in the number of infected mosquitoes depends on infected and death of
infected mosquitoes during that period of time. Review the references for
this project to provide additional background on the equations used in
modeling malaria.

The detailed assignment provides a list of starting equations and
parameters for you to use in creating this model. You should start by
reviewing the references provided for a more detailed review of the
life cycle for malaria and the nature of efforts aimed at controlling its
spread.

You should create the basic model using those instructions and then
prepare a report describing the nature of the findings for the basic model
and for any of the optional model additions you implement.

14.3.3 Population Dynamics Model

One of the intensively studied populations of predators and prey is the
wolf/moose populations of Isle Royale in Lake Superior. As this is an island,
the relationships between the populations are not nearly as complex as
in other predator/prey populations. As an example, you can compare the
conceptual relationships of the species on Isle Royale versus Yellowstone
National Park as shown in Figure 14.3.

Isle
royale

Yellowstone

Humans

Mountain
lionsWolvesBears

Wolves

Moose

Bison Moose Elk

FIGURE 14.3 Comparison of predator prey with Yellowstone National Park.
(From http://www.isleroyalewolf.org/overview/overview/the_setting.html,
2014.)

http://www.isleroyalewolf.org/overview/overview/the_setting.html

Capstone Projects    ◾    175

The classic predator–prey model is based on the Lotka–Volterra equation
for population change (Wikipedia, 2016):

 dx

dt
x y= −()α β (14.1)

 dy

dt
y(x)= − −γ δ (14.2)

where:
x is the number of prey
y is the number of predators
The equations represent the growth rate of the populations over time
t represents time
α, β, γ, and δ are constants representing the interactions of the

population

Conceptually, this model can be visualized by the concept map shown in
Figure 14.4. Each of the populations is governed by its own birth and death
rates. In addition, the availability of the food supply of moose impacts the
birth rate of the wolves, whereas the number of wolves impacts the death
rate of moose.

Your project will be to build a simple model of the wolf and moose
population starting with detailed instructions and parameters given
on the project website. Once you have built this model, you should
see the cyclic nature of the population growth and decline associated with
this system. Test the sensitivity of the model to changes in the moose
birth and death rates. For the given birth rate, what does the death rate

Wolf populationBirths per wolf

Births per moose Moose population Moose deaths

Wolf deathsWolf deaths
fraction

Moose death
fraction

Moose
births

Wolf
births

FIGURE 14.4 Concept map of Moose–Wolf population dynamics.

176 ◾ Modeling and Simulation with MATLAB® and Python

need to be to provide a more stable population of both species over
time (e.g., a range closer to 250 rather than 600–800). How does this
change if the moose birth rate increases by 50%? Explore the sensitivity
of the wolf birth and death rates in the same way. Add one of more of
the optional exercises based on the research results of the Isle Royale
research project. Use these simulations to prepare a summary report
and presentation.

14.3.4 Skydiver Project

This project focuses on modeling the fall of a skydiver and plotting their
position and velocity in free fall and after they open their parachute.
Modeling the motion and location of a person or parcel exiting an air-
plane or helicopter with a parachute must account for a number of physi-
cal laws and related environmental conditions. If these are not taken into
account properly, a skydiver might open his or her parachute too late to
slow down before reaching the ground, a person seeking to reach a partic-
ular ground location could end up far away from the target position, or a
parcel dropped to reach particular recipients on the ground would be lost.
The challenge of this project is to create a model that accounts for several
of the variables that affect the flight of a skydiver or parcel dropped from
an airplane—predicting their velocity and location.

Two sets of forces act on the skydiver. First, there is the acceleration due
to gravity moving the skydiver toward the ground. Second, there is the
resistance of the air acting in the opposite direction. The basic equations
we used in the ball model previously can be used to calculate the accelera-
tion. Remember that acceleration is defined as the change in velocity with
respect to time. Applying Newton’s second law of motion:

 F ma= (14.3)

where:
F is the force
m is the mass of a body
a is the acceleration

Stated differently, acceleration is directly proportional to force and inversely
proportional to mass. In the case of the skydiver, the acceleration is the
acceleration due to gravity. This is approximately −9.81 m/s2. It is negative

Capstone Projects    ◾    177

when upward direction is considered to be the positive direction. The total
force in the downward direction is then the mass × acceleration.

This accounts for the downward force but does not consider the drag
associated with the friction of the air. The drag will be a force in the oppo-
site direction, which is related to the density of the medium the object is
moving through. To account for this, we need to add the drag equation:

 R DPAv= 0 5 2. (14.4)

where:
D is the drag coefficient
P is the air density
A is the cross-sectional area of the object
v is the velocity

The vertical position of the skydiver is then calculated as:

 y v t
gt= +0

2

2
 (14.5)

where:
y is the vertical position
v0 is the initial velocity
t is the time
g is the acceleration due to gravity (9.81 m/s2)

However, the drag is not constant over time. There will be some air
resistance of the skydiver based on how much they spread their limbs to
catch the air. That force will continue until the ripcord is pulled and the
parachute deployed. At that point, the parachute will introduce additional
drag to slow down the descent.

The initial parachute model should account for these two forces assum-
ing a constant air density. The model should then be used to experiment
with the time and location of free fall with the deployment of the parachute
to determine whether the skydiver will land safely. There are then other
components that can be added to remove some of the model assumptions.
The details for those optional simulations are provided in the downloads
for this project along with a list of references that can be used to choose an
appropriate set of parameter values for the simulation.

178 ◾ Modeling and Simulation with MATLAB® and Python

14.3.5 Sewage Project

The health of a stream can be measured in many different ways. One of the
most critical conditions needed to maintain a healthy aquatic community
is the level of dissolved oxygen in the stream. The dissolved oxygen (DO) is
the source of oxygen for all aquatic plants and animals. Natural levels in a
stream can go from 0 to 14.6 parts per million. In water, this measure by
volume is also equivalent to the measure by weight—milligrams per liter,
because of the molecular weight of water.

When sewage is released into a stream, the organic material is decom-
posed by bacteria. The bacteria consume oxygen, thus depleting the
amount of oxygen available to the other biota in the stream. To minimize
those impacts, municipal sewage treatment plants use one of several pro-
cesses to greatly reduce the amount of organic waste left in the effluent
before it is released into a stream or lake. Nevertheless, the remaining
waste causes a reduction in the dissolved oxygen level.

The simplest model of dissolved oxygen (DO) was developed in the 1930s
by two civil engineers named Streeter and Phelps. This Streeter–Phelps model
depends on the relationship between oxygen demanding wastes, measured by
biochemical oxygen demand (BOD) and the rates of deoxygenation caused
by its decomposition. This rate is balanced against the rate of reaeration
related to adding oxygen back from the atmosphere. Those rates, in turn, are
related to the physical conditions in the stream and the stream temperature.

Right after the waste is discharged, the deoxygenation rate exceeds the
reaeration rate causing a decline in the DO level. This occurs until the first
set of waste is decomposed. Then the stream begins to recover as the
reaeration rates exceeds the deoxygenation rate. The process produces an
oxygen sag curve looking something like Figure 14.5. This figure shows
the oxygen level as a function of time as bacteria decompose the waste
load creating an oxygen deficit while the atmosphere reaerates the stream.

The Streeter–Phelps model for this process is actually a differential equation:

 dD

dt
kt = − −1 2 1L k Dt (14.6)

where:
D is the dissolved oxygen deficit over time
L is the concentration of organic matter requiring decomposition
k1 is the coefficient of deoxygenation
k2 is the coefficient of reaeration

Capstone Projects    ◾    179

Thinking about this equation with respect to each increment of time, it
says that the oxygen deficit for the current time period is first, dependent
on the deoxygenation coefficient (a constant for each section of the stream)
times the volume of waste remaining to be decomposed. The deficit is off-
set by the reaeration rate times the oxygen left after the last time incre-
ment. That is because the greater the difference between the concentration
of oxygen in the stream and the concentration in the air, the greater the
rate of diffusion of oxygen back into the stream. The constant for reaera-
tion also varies by stream segment as each segment may have a different
amount of turbulence and different streambed and therefore more or less
mixing with the air.

This modeling project will have you build a DO model using a modified
Streeter–Phelps formulation and using that model to evaluate some poli-
cies for changing a sewage treatment facility discharging into an example
Ohio stream. You will test the sensitivity of the model to changes in the
parameters and then undertake one or more optional modeling tasks to
examine the impacts of an increased waste load on the stream and validate
the model against some sample data from the same stream.

Critical location

De�cit

0 2 4 6 8 10 12 14 16 18 20
Time (days)

Dissolved oxygen sag curve

2

3

4

6

5

8

7

9

10

11
D

iss
ol

ve
d

ox
yg

en
 (m

g/
l)

DO pro�le with no reaeration

DO pro�le with reaeration

FIGURE 14.5 Components of the oxygen sag curve.

180 ◾ Modeling and Simulation with MATLAB® and Python

14.3.6 Empirical Model of Heart Disease Risk Factors

For this project, you will build an empirical model of the risks for heart
disease and use that model to simulate the impacts of changes in the price
for cigarettes and other behavioral changes on the occurrence of the dis-
ease. The project starts with the use of a 1999 dataset from the Centers for
Disease Control that shows the major risks for heart disease and the rate
of disease for each state in the United States. You will use this to build a
multiple regression model where the response variable is heart disease and
the possible predictor variables are the risk factors. The risk factors include
smoking, obesity, lack of physical activity, and the positive impact of eat-
ing fruits and vegetables.

Once you have a model where you have identified all of the statistically
significant predictors, you will use that statistical equation to build a model
that allows the examination of the impacts of policies such as increasing
cigarette costs on smoking rates and then on heart disease. Additional
optional analyses include assembling a similar dataset for 2014–2015 to
see if any progress has been made over time in reducing risks and heart
disease rates.

14.3.7 Stochastic Model of Traffic

This project will involve the collection of local data that help to build and
test a stochastic model of the travel time to work that was completed in
Chapter 2. In that exercise, you may recall that there were two distinct
paths from home to work that were simulated—one using only local
streets and one using the highway. Each street and highway section travel
time was a linear function of average travel speed, distance, and traffic
control devices that predicted the travel time for that segment. The time
added by traffic control devices (stop signs and traffic lights) was input as
constant parameters for each segment where they appeared.

In reality, the amount of time it takes to traverse an intersection with
a traffic control device depends on the random occurrence of conflicts
with other vehicles and status of traffic lights when a traveler arrives at
an intersection. In this exercise, you will gather data for a few represen-
tative intersections in your own community and use the data you gath-
ered to create a stochastic representation of what could happen at each
intersection. This assumes that the hypothetical trip in the exercise is in
your community and that the sample data you collect apply equally to all
similar intersections in the simulated trip.

Capstone Projects    ◾    181

For intersections that have four-way stop signs, the amount of time
it will take to clear the intersection is related to the number of cars that
arrive at the intersection at the same time as well as their order. For our
purposes, we will not consider the order of arrival directly but will instead
collect information on the number that arrives at our sample intersections
at the same time and the time it takes for the last car to clear the intersec-
tion as well as the frequency of those events during a representative hour.

Traffic lights have a similar impact with the addition of the timing of the
green light period for the target direction of travel. The total time at such
an intersection will be related to the cycle time for the traffic light and the
number of cars stacked up in the direction of travel at a red light. When
the light turns green, the more cars that were stacked at the intersection,
the longer it will take for the last car in line to clear that intersection.
Again, you will pick one or two sample intersections in your community
and compile data on the light timing and time to clear the last car over a
representative hour.

Once you have the relevant data, you will need to create two functions
that use a random number generator to pick the time to clear the inter-
sections at traffic lights and stop signs respectively. You can then run the
model a large number of times and then analyze the range of times it may
take for that simple trip. The instructions for this project provide some
guidance on taking and analyzing a sample and integrating the resulting
distributions into your stochastic model.

14.3.8 Other Project Options

You may have your own ideas for a project with similar scope. If so, you
should create a proposal for undertaking that project that includes a short
description of the model purpose, an initial conceptual model, and the
initial mathematical representation you will code based on the available
literature. That should then be discussed with your instructor before you
proceed with the project.

REFERENCE

Wikipedia, 2016. Lotka-Volterra Equations. https://en.wikipedia.org/wiki/Lotka%
E2%80%93Volterra_equations. As viewed on December 15, 2016.

https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations
https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations

http://taylorandfrancis.com

183

Index

Note: Page numbers followed by f and t refer to figures and tables, respectively.

2D plotting, 61
command, 61, 68
in MATLAB, 62f
in Python, 69f
tools and functions, 68

2005 Toyota Avalon, design, 9

A

abs() function, 28t, 39t
Absolute error, 152–153, 164
Acceleration (a), 113–114, 176
Algorithms and errors, 155–159

Euler’s method, 156–158
vs. analytic solution, 157f

RK4 method, 158–159
American Society of Mechanical

Engineers (ASME), 161
Anaconda, programming language,

31, 68
Array, 26

lists and, 35–38
MATLAB® and Python, 55–60

arrays and matrices, 55–56
matrix mathematics, 56–58

one-dimensional, 27, 36
Python, 37
two-dimensional, 27, 36

array() function, 37
ASME (American Society of Mechanical

Engineers), 161
Axis function, 68, 75

B

Ball toss exercise, 114–115
Biochemical oxygen demand (BOD), 178
BlenX, programming language, 141
Blood plasma, 171–172
Blue Waters, 7
BOD (biochemical oxygen demand), 178
Break command, 100
Breakpoints, 30, 41
Brownian motion, 141
Built-in functions, 127

MATLAB, 28t
Python, 39t

Business systems model, 102

C

Calculation verification, 161
Capstone projects, 169–181

descriptions, 171–181
drug dosage model, 171–172, 171f
heart disease risk factors, empirical

model, 180
malaria model, 172–174, 173f
options, 181
population dynamics model,

174–176, 174f, 175f
sewage project, 178–179, 178f
skydiver project, 176–177
traffic, stochastic model, 180–181

goals, 170–171
overview, 169–170

184 ◾ Index

Carbon dioxide, 107
Carrying capacity (C), 109
Centers for Disease Control and

Prevention, 172, 180
Cmap, 12, 12f
Code verification, 161
Coefficient of determination, 124–125, 165
Coin toss simulation, 138
colon() function, 27
Command Window

MATLAB, 22
programs execution, 29
run command, 30
Spyder, 31
variable, 24

Computational modeling, 1–17
computational science

importance, 1–3
modeling process, 9–17

mathematical modeling
terminology, 14

and simulation terminology,
14–15

steps in, 11–14, 11f
in science and engineering, 3–9

Computational science, 1–3
variables in, 24, 34

Computer power and scientific modeling,
4t, 5t–6t

Concept map/concept-mapping, 12
drug dosage model, 171, 171f
Moose–Wolf population

dynamics, 175f
tools, 12

Conceptual model, 12, 160
Conditional statements, 87–94

logical operators, 88
MATLAB®, 89–92
Python, 92–94
relational operators, 87–88

Constrained growth, 108–111
exercises, 110–111, 111t

Continue command, 100
Continuous model, 15
Control statements, 100
Cosmic rays, 107
Cray-1 supercomputer, 2

D

Def keyword, 147
Del command, 33
Demographer forecasting, 106
Deoxygenation rate, 178
Department of Defense (DoD), 161
Deterministic linear models, 45–52

linear interpolation, 49–51, 50t
linear models/linear equations, 46–49

limitations, 51–52
systems, 51

mathematical representation, 45–46
observe/experiment, 45
screening model, 45

Deterministic model, 14–16, 163
disp() function, 28t
Dissolved oxygen (DO), 178–179
divmod() function, 39t
DO (dissolved oxygen), 178–179
DoD (Department of Defense), 161
Drag coefficient (Cd), 114
Drug dosage model, 171–172

concept map, 171f
Drug screening, 8
Dynamic model, 15–16

nonlinear and, 101–115

E

Empirical data, estimating model, 117–131
build forecasting models, 117–120

limitations, 118–120
fitting mathematical function to data,

120–131
fitting linear model, 122–125
linear models with multiple

predictors, 125–126
nonlinear model estimation,

126–131
ENIAC, computer, 3, 7
Errors, scientific research and modeling,

152–159
absolute and relative, 152–153
algorithms and, 155–159

Euler’s method, 156–158
RK4 method, 158–159

Index    ◾    185

numeric associative and distributive
properties, violation, 155

ODE Modules in MATLAB® and
Python, 159

precision, 153
truncation and rounding, 153–155

Euler’s method, 156–158
vs. analytic solution, 157f

Exogenous parameters, 102
Exponential function, 104, 106
Extending model, 113–115

ball toss exercise, 114–115
eye() function, 27, 37

F

F distribution, 124
Figure function, 74
Fitted regression line and residuals, 123f
float() function, 39t
Flowchart(s), 83–84

bottle filling, 85f
if-elif-else, 93, 93f
if-elseif-else-end, 90, 90f
symbols, 84f
tipping, 91f, 94f

Force of drag (Fd), 114
For loop, 97–99

MATLAB®, 97–98
Python, 98–99

Forrester, Jay, 101, 108–109
Free and Open-Source Software (FOSS), 30
Frictional force, 114
Function(s), 145–149

2D plotting tools and, 68
abs(), 28t, 39t
array(), 37
axis, 68, 75
built-in, 127

MATLAB, 28t
Python, 39t

colon(), 27
curve_fit, 130
disp(), 28t
divmod(), 39t
exponential, 104, 106
eye(), 27, 37

figure, 74
float(), 39t
globals(), 39t
legend, 68, 76
linspace(), 27, 37
MATLAB®, 145–147
ones(), 27, 37
open(), 28t, 39t
plot/plotting, 63, 64f, 70, 73f, 74
print(), 39t
Python, 147–149

code reusability, 148
modules, 148–149
syntax, 147–148
variable-length argument lists, 148

title, 68, 75

G

Galaxy formation, 8
Gametocytes, 172–173
Generalized linear model, 130
globals() function, 39t
Guidelines, 162–166

validation, 163–166
graphical methods, 166
quantitative and statistical

validation measures, 164–166
verification, 162–163

H

Healthy villagers, 173
Heart disease risk factors, empirical

model, 180
Helloworld.m file, 22, 29
Hold command, 66, 67f
Household heating system, 102
Human-managed systems, 108

I

IBI (index of biotic integrity), 121, 122f
Identity matrix, 57–58
IDEs. See Integrated development

environments (IDEs)
If-elif-else flowchart, 93, 93f

186 ◾ Index

If-elseif-else-end flowchart, 89–90, 90f
If statements, 89
Immune villagers, 173
Index of biotic integrity (IBI), 121, 122f
Industrial Dynamics (book), 101
Integrated development environments

(IDEs), 30
free, 30
Spyder, 31

Intersection conflict time delays and
probabilities, 135t

int() function, 39t
iPhone 5s, 2
IPython, 31, 38, 40, 68, 69f
Isle Royale, 174

K

Keywords, 25, 34
MATLAB, 25–26, 25t
Python, 34–35, 35t

L

Legend function, 68, 76
len() function, 39t
Libby, Willard, 107
Light intensity, 61, 68, 126, 127f
The Limits to Growth (book), 108
Linear equation, 47, 48f, 49
Linear interpolation, 49–51, 50t
Linear model, 47–48

coefficients, 125
fitting, 122–125, 124t
generalized, 130
with multiple predictors, 125–126
spring, 48
standard, 129

Linear regression, 122, 124, 127
Linear transformation

limitations, 130
nonlinear data, 126t

Line specifiers, 63, 70
in MATLAB, 63, 64f
in Python, 70, 71f

linspace() function, 27, 37
Llight, variable, 127
Local variables, 24, 33

Logical operators, 88
Lotka–Volterra equation, 175
Low sampling resolution

in MATLAB, 65f
in Python, 73f

M

Malaria model, 172–174, 173f
Mantissa, 153
Mathematical model(ing), 10, 14, 172
MATLAB®/MATLAB, 23–24

2D plot, 62f
built-in functions, 28t
code, 121

coin toss simulation, 138
Command Window, 22
conditional statements, 89–92
curve_fit functions, 130
curve fitting app, 129f
functions, 145–147
hello world script, 29f
keywords, 25–26

reserved, 25t
linear/nonlinear model, procedures, 128t
line specifiers, 63, 64f
loops, 97–98
low sampling resolution, 65f
mathematic operators, 24t, 25t
matrix operations in, 58–60
plotting in, 61–68, 66f
programming environment, 21–30

basic syntax, 23–28, 24t, 25t
breakpoints, 30
built-in functions, 28t
Command Window, 22
debugging, 30
defined, 21, 23
interface, 21–22, 22f
program execution, 28–29
repeatable code creation, 29–30
reserved keywords, 25t
scalar operation in, 24–25

and Python
array mathematics, 55–60
ODE modules, 159, 159t
random number generators,

136–137, 137t

Index    ◾    187

R2016a, 21
while loops, 99

Matplotlib, 68, 74
Matrix, 27, 36

algebra, 55
identity, 57–58
mathematics, 56–58
in MATLAB®, operations, 58–60

addition/subtraction, 58
multiplication, 57, 59–60
in Python, operations, 59–60

addition, 59
import numpy as np, 59

subtraction, 59
max() function, 28t, 39t
Mind Map Maker, 12, 13f
min() function, 28t, 39t
Mississippi River Basin Model, 10, 10f
Model(ing), 9–17

auto manufacturers, 9
business systems, 102
classification, 14–15
complex systems, 101
computational. See Computational

modeling
computer power and scientific, 4t,

5t–6t
conceptual, 12, 160
continuous, 15
deterministic, 14–16, 163

linear. See Deterministic linear
models

drug dosage, 171–172, 171f
dynamic, 15–16

nonlinear, 101–115
empirical data, estimating.

See Empirical data, estimating
model

generalized linear, 130
heart disease risk factors, empirical,

180
linear, 47–48

coefficients, 125
fitting, 122–125
generalized, 130
with multiple predictors, 125–126
spring, 48
standard, 129

malaria, 172–174, 173f
mathematical, 10, 14
Mississippi River Basin, 10, 10f
molecular, 9
multiple regression, 180
nonlinear and dynamic, 101–115

modeling complex systems, 101
physical and social phenomena,

111–115
systems dynamics, 101–111

one-compartment, 172
physical, 9–10
physical and social phenomena,

111–115
extending model, 113–115
tossed ball, model, 112–113

population dynamics, 174–176, 174f,
175f

predator–prey, 110, 174–175, 174f
initial parameters, 111t

probabilistic, 14
regression, 130
screening, 46
spatial, 102
steady-state, 15
steps in, 11–14, 11f

computer model creation, 13
conceptual model, 12
partial concept map, 12, 12f
partial mind map, 12f, 13
problem analyze and objective,

11–12
simplifying assumptions, 13

stochastic, 17, 133–141
creation, 134–136
definition, 133
larger scale, example of, 139–141
random number generators,

136–134
simple code example, 137–139
traffic, 180–181

Streeter–Phelps, 178
systems dynamics, 16–17

Modeling and simulation (M&S), 8, 161
application, 15–17
benefits, 9
terminology, 14–15

concepts and, 160f

188 ◾ Index

mod() function, 28t
Modules, 38

Math and SciPy, 127
Python, 148–149

and MATLAB®, ODE, 159
Molecular modeling, 9
Monte Carlo modeling, 139–140
Moose–Wolf population dynamics, 175, 175f
M&S. See Modeling and simulation (M&S)
Mules, 9
Multiple regression, 126

model, 180
Municipal sewage treatment plants, 178

N

Newton’s second law of motion, 113–114, 176
Nonlinear model

and dynamic, 101–115
modeling complex systems, 101
physical and social phenomena,

111–115
systems dynamics, 101–111

estimation, 126–131, 126t
limitations with linear

transformation, 130
nonlinear fitting/regression, 130–131
segmentation, 131

Numerical errors, 155
Numeric associative and distributive

properties, 155
NumPy, library, 36–37, 137

O

Object-oriented programming, 145
ODE. See Ordinary differential equation

(ODE)
One-compartment model, 172
One-dimensional array, 27, 36
ones() function, 27, 37
open() function, 28t, 39t
Operators

“:”, 27
logical, 88
MATLAB, 24–25, 24t
Python, 34

mathematic, 34t

relational, 87–88
variable and, 23–25, 32–34

Optional starting code, 170–171
Ordinary differential equation (ODE), 158

in MATLAB® and Python, 159
modules, 158
solvers in, 159t

Oxygen sag curve, 178, 179f

P

Partial concept/mind map, 12–13, 12f
Pass by reference, 147
Pass by value, 146
Physical and social phenomena, modeling,

111–115
extending model, 113–115

ball toss exercise, 114–115
tossed ball, model, 112–113

Plot function, 63, 70, 73f, 74
Plotting, 61–76

in MATLAB, 61–68, 62f
2D plot command, 61, 62f
function ploting, 64f
help plot command, 63
hold command, 66, 67f
line specifiers, 63, 64f
low sampling resolution, 65f
multiple curves in single plot, 66f

in Python, 68–76
2D plot, 69f
IPython graphics backend setting,

69f
line specifiers, 70, 71f
matplotlib, 68
multiple curves, 74f
multiple plot commands, 75f
simple plot, 71f

Population dynamics model, 174–176,
174f, 175f

Precision, 153
Predator–prey model, 110, 174

classic, 175
initial parameters, 111t
with Yellowstone National Park, 174f

print() function, 39t
Probabilistic model, 14–15
Problem solving, 79–85

Index    ◾    189

bottle filling example, 80–81,
84–85, 85f

overview, 79–80
program development, tools, 81–84

flowchart, 83–84, 84f
pseudocode, 82
top–down design, 82–83

Pseudocode, 82
Python, 92–94, 137

array, 37. See also Array, MATLAB®
and Python

code, 122, 138
conditional statements, 92–94
environment, 30–42

code libraries, 38
debugging, 41–42
defined, 30
keywords, 34–35
libraries, 38–39
lists and arrays, 35–39
mathematic operators, 34t
program execution, 40
recommendations and installation,

30–31
repeatable code creation, 40, 41f
reserved keywords, 35t
Spyder interface, 31–32, 31f
variables and operators, 32–34

functions, 147–149
built-in, 39t
code reusability, 148
modules, 148–149
syntax, 147–148
title, 75
variable-length argument lists, 148

hello world script, 41f
keywords, 34–35

reserved, 35t
line specifiers, 70, 71f
for loop, 98–99
low sampling resolution in, 73f
MATLAB®/MATLAB

ODE modules, 159, 159t
random number generators,

136–137, 137t
matrix operations in, 59–60

addition, 59
import numpy as np, 59

modules, 148–149
operators, 34, 34t
plotting in, 68–76

2D plot, 69f
IPython graphics backend

setting, 69f
line specifiers, 70, 71f
matplotlib, 68
multiple curves, 74f
multiple plot commands, 75f
simple plot, 71f

procedures, 128t
variables, 32–33
while loops, 99

Q

Quantitative and statistical validation
measures, 164–166

R

R2 (R squared), 124
Radiocarbon age, 107
range() function, 39t, 98
Regression model, 130, 166
Relational operators, 87–88
Relative error, 152–153, 164–165
Return keyword, 147
RK4 (Runge–Kutta 4) method, 158–159
RMSE (root mean square error), 165
Rng command, 137
Root mean square error (RMSE), 165
Rounding error, 153–154
R squared (R2), 124
Runge–Kutta 4 (RK4) method, 158–159

S

Scalar variable, 24
Scipy.integrate.odeint, 159, 159t
Scope, 24, 33
Screening model, 46
Segmentation, 131
Sewage project, 178–179, 178f
SIAM (Society for Industrial and Applied

Mathematics), 2
Sick villagers, 173

190 ◾ Index

Simulation
coin toss, MATLAB and Python code,

138
computer, 155, 160
defined, 1, 14
Hooke’s Law (HTML5), 49
modeling and, 14–15

applications, 15–17
concepts and terminology, 160f
terminology and approaches,

mathematical, 14
society, 160

Single precision numbers, 153, 155
size() function, 28t
Skydiver project, 176–177
Slices, array, 28, 38
Society for Industrial and Applied

Mathematics (SIAM), 2
Spatial model, 102
Sporozoites, 172–173
Spring constant, 49
Spyder, 30–31

advantage over testing code, 41
Editor, 40
interface, 31–32

default, 31f
stats() functions, 145–146, 148
Steady-state model, 15
Stochastic models, 17, 133–141, 165

creation, 134–136
definition, 133
larger scale, example of, 139–141
MATLAB® and Python, random

number generators, 136–137,
137t

overview, 133–134
simple code example, 137–139
traffic, 180–181

Streeter–Phelps model and formulation,
178–179

Supercomputers, 1–2, 8
Cray-1, 2

Switch-case structures, 91–92
Systems dynamics, 101–111

components, 102–104
constrained growth, 108–111

exercises, 110–111, 111t

models, 16–17
unconstrained growth and decay,

104–108, 105f
exercises, 106–108

T

Thermostat control, 102–103
Tipping flowchart, 91f, 94f
Title function, 68, 75
Top–down design, 82–83
Toxic effect, 172
Traffic control devices, 13, 180
Truck loading data, 47t
Truncation

code, 154
error, 153, 155

rounding, 153–155
Truncation.m/truncation.py program, 154
T test, 124
Tuple, 148
Two-dimensional array, 27, 36

U

Unconstrained growth and decay,
104–108, 105f

exercises, 106–108
Uniform random number scheme, 135

V

Varargin and varargout, variables, 146
Variable(s), 147–148

Command Window, 24
in computational science, 24, 34
Explorer button, 32
homogeneous, 24
llight, 127
local, 24, 33
MATLAB, 23–24
operators and, 23–25, 32–34
Python, 32–33
scalar, 24
varargin and varargout, 146

Vector, 27, 36
Vector-borne disease, 172

Index    ◾    191

Velocity, 113
Verification and validation (V&V), 159–166

definition, 152, 160
guidelines, 162–166

graphical methods, 166
quantitative and statistical

validation measures, 164–166
overview, 160–162

Verification, validation, and accreditation
(VV&A), 161

von Neumann, John, 3
V&V. See Verification and validation (V&V)
VV&A (verification, validation, and

accreditation), 161

W

While loops, MATLAB® and
Python, 99

whos() function, 28t

Y

Yellowstone National Park, 174, 174f

Z

Zero-indexed array, 37–38
zeros() function, 27, 37

http://taylorandfrancis.com

	Cover
	Half Title
	Title Page�����������������
	Copyright Page���������������������
	Table of Contents
	Preface��������������
	Authors��������������
	Chapter 1: Introduction to Computational Modeling
	1.1 THE IMPORTANCE OF COMPUTATIONAL SCIENCE��
	1.2 HOW MODELING HAS CONTRIBUTED TO ADVANCES IN SCIENCE AND ENGINEERING��
	1.2.1 Some Contemporary Examples���������������������������������������

	1.3 THE MODELING PROCESS�������������������������������
	1.3.1 Steps in the Modeling Process��
	1.3.2 Mathematical Modeling Terminology and Approaches to Simulation���
	1.3.3 Modeling and Simulation Terminology��
	1.3.4 Example Applications of Modeling and Simulation��

	EXERCISES����������������
	REFERENCES�����������������

	Chapter 2: Introduction to Programming Environments
	2.1 THE MATLAB® PROGRAMMING ENVIRONMENT��
	2.1.1 The MATLAB® Interface����������������������������������
	2.1.2 Basic Syntax�������������������������
	2.1.2.1 Variables and Operators��������������������������������������
	2.1.2.2 Keywords�����������������������
	2.1.2.3 Lists and Arrays�������������������������������

	2.1.3 Common Functions�����������������������������
	2.1.4 Program Execution������������������������������
	2.1.5 Creating Repeatable Code�������������������������������������
	2.1.6 Debugging����������������������

	2.2 THE PYTHON ENVIRONMENT���������������������������������
	2.2.1 Recommendations and Installation���
	2.2.2 The Spyder Interface���������������������������������
	2.2.3 Basic Syntax�������������������������
	2.2.3.1 Variables and Operators��������������������������������������
	2.2.3.2 Keywords�����������������������
	2.2.3.3 Lists and Arrays�������������������������������

	2.2.4 Loading Libraries������������������������������
	2.2.5 Common Functions�����������������������������
	2.2.6 Program Execution������������������������������
	2.2.7 Creating Repeatable Code�������������������������������������
	2.2.8 Debugging����������������������

	EXERCISES����������������

	Chapter 3: Deterministic Linear Models
	3.1 SELECTING A MATHEMATICAL REPRESENTATION FOR A MODEL��
	3.2 LINEAR MODELS AND LINEAR EQUATIONS���
	3.3 LINEAR INTERPOLATION�������������������������������
	3.4 SYSTEMS OF LINEAR EQUATIONS��������������������������������������
	3.5 LIMITATIONS OF LINEAR MODELS
	EXERCISES����������������
	REFERENCES�����������������

	Chapter 4: Array Mathematics in MATLAB® and Python
	4.1 INTRODUCTION TO ARRAYS AND MATRICES��
	4.2 BRIEF OVERVIEW OF MATRIX MATHEMATICS���
	4.3 MATRIX OPERATIONS IN MATLAB®���������������������������������������
	4.4 MATRIX OPERATIONS IN PYTHON��������������������������������������
	EXERCISES����������������

	Chapter 5: Plotting
	5.1 PLOTTING IN MATLAB®������������������������������
	5.2 PLOTTING IN PYTHON�����������������������������
	EXERCISES����������������

	Chapter 6: Problem Solving
	6.1 OVERVIEW�������������������
	6.2 BOTTLE FILLING EXAMPLE���������������������������������
	6.3 TOOLS FOR PROGRAM DEVELOPMENT��
	6.3.1 Pseudocode�����������������������
	6.3.2 Top–Down Design����������������������������
	6.3.3 Flowcharts�����������������������

	6.4 BOTTLE FILLING EXAMPLE CONTINUED���
	EXERCISES����������������

	Chapter 7: Conditional Statements
	7.1 RELATIONAL OPERATORS�������������������������������
	7.2 LOGICAL OPERATORS����������������������������
	7.3 CONDITIONAL STATEMENTS���������������������������������
	7.3.1 MATLAB®��������������������
	7.3.2 Python�������������������

	EXERCISES����������������

	Chapter 8: Iteration and Loops
	8.1 FOR LOOPS��������������������
	8.1.1 MATLAB® Loops��������������������������
	8.1.2 Python Loops�������������������������

	8.2 WHILE LOOPS����������������������
	8.2.1 MATLAB® While Loops��������������������������������
	8.2.2 Python While Loops�������������������������������

	8.3 CONTROL STATEMENTS�����������������������������
	8.3.1 Continue���������������������
	8.3.2 Break������������������

	EXERCISES����������������

	Chapter 9: Nonlinear and Dynamic Models
	9.1 MODELING COMPLEX SYSTEMS�����������������������������������
	9.2 SYSTEMS DYNAMICS���������������������������
	9.2.1 Components of a System�����������������������������������
	9.2.2 Unconstrained Growth and Decay���
	9.2.2.1 Unconstrained Growth Exercises���

	9.2.3 Constrained Growth�������������������������������
	9.2.3.1 Constrained Growth Exercise��

	9.3 MODELING PHYSICAL AND SOCIAL PHENOMENA���
	9.3.1 Simple Model of Tossed Ball��
	9.3.2 Extending the Model��������������������������������
	9.3.2.1 Ball Toss Exercise���������������������������������

	REFERENCES�����������������

	Chapter 10: Estimating Models from Empirical Data
	10.1 USING DATA TO BUILD FORECASTING MODELS��
	10.1.1 Limitations of Empirical Models���

	10.2 FITTING A MATHEMATICAL FUNCTION TO DATA���
	10.2.1 Fitting a Linear Model������������������������������������
	10.2.2 Linear Models with Multiple Predictors��
	10.2.3 Nonlinear Model Estimation��
	10.2.3.1 Limitations with Linear Transformation��
	10.2.3.2 Nonlinear Fitting and Regression��
	10.2.3.3 Segmentation����������������������������

	EXERCISES����������������
	FURTHER READINGS�����������������������
	REFERENCES�����������������

	Chapter 11: Stochastic Models
	11.1 INTRODUCTION������������������������
	11.2 CREATING A STOCHASTIC MODEL���������������������������������������
	11.3 RANDOM NUMBER GENERATORS IN MATLAB® AND PYTHON��
	11.4 A SIMPLE CODE EXAMPLE���������������������������������
	11.5 EXAMPLES OF LARGER SCALE STOCHASTIC MODELS��
	EXERCISES����������������
	FURTHER READINGS�����������������������
	REFERENCES�����������������

	Chapter 12: Functions
	12.1 MATLAB® FUNCTIONS�����������������������������
	12.2 PYTHON FUNCTIONS����������������������������
	12.2.1 Functions Syntax in Python��
	12.2.2 Python Modules����������������������������

	EXERCISES����������������

	Chapter 13: Verification, Validation, and Errors
	13.1 INTRODUCTION������������������������
	13.2 ERRORS������������������
	13.2.1 Absolute and Relative Error���
	13.2.2 Precision�����������������������
	13.2.3 Truncation and Rounding Error���
	13.2.4 Violating Numeric Associative and Distributive Properties���
	13.2.5 Algorithms and Errors�����������������������������������
	13.2.5.1 Euler’s Method������������������������������
	13.2.5.2 Runge–Kutta Method����������������������������������

	13.2.6 ODE Modules in MATLAB® and Python���

	13.3 VERIFICATION AND VALIDATION���������������������������������������
	13.3.1 History and Definitions�������������������������������������
	13.3.2 Verification Guidelines�������������������������������������
	13.3.3 Validation Guidelines�����������������������������������
	13.3.3.1 Quantitative and Statistical Validation Measures��
	13.3.3.2 Graphical Methods���������������������������������

	EXERCISES����������������
	REFERENCES�����������������

	Chapter 14: Capstone Projects
	14.1 INTRODUCTION������������������������
	14.2 PROJECT GOALS�������������������������
	14.3 PROJECT DESCRIPTIONS��������������������������������
	14.3.1 Drug Dosage Model�������������������������������
	14.3.2 Malaria Model���������������������������
	14.3.3 Population Dynamics Model���������������������������������������
	14.3.4 Skydiver Project������������������������������
	14.3.5 Sewage Project����������������������������
	14.3.6 Empirical Model of Heart Disease Risk Factors���
	14.3.7 Stochastic Model of Traffic���
	14.3.8 Other Project Options�����������������������������������

	REFERENCE����������������

	INDEX������������

